Combination of weighted ℓ2, 1 minimization with unitary transformation for DOA estimation

نویسندگان

  • Chundi Zheng
  • Gang Li
  • Xiqin Wang
چکیده

Using the centro-symmetry property of uniform linear array (ULA), we propose an algorithm that combines the weighted l2;1 minimization with the unitary transformation to improve the performance of DOA estimation. Exploiting the result of the unitary transformation, more credible weights can be obtained and the jointly sparse constraint can be further enhanced. Moreover, the unitary transformation incorporates the forward– backward spatial smoothing, which improves the performance of the weighted l2;1 minimization for correlated sources. Simulations demonstrate that the proposed method can achieve better performance in terms of resolution and estimation accuracy. & 2013 Elsevier B.V. All rights reserved.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Direction of Arrival Estimation for MIMO Radar via Unitary Nuclear Norm Minimization

In this paper, we consider the direction of arrival (DOA) estimation issue of noncircular (NC) source in multiple-input multiple-output (MIMO) radar and propose a novel unitary nuclear norm minimization (UNNM) algorithm. In the proposed method, the noncircular properties of signals are used to double the virtual array aperture, and the real-valued data are obtained by utilizing unitary transfor...

متن کامل

2-D Unitary ESPRIT-Like Direction-of-Arrival (DOA) Estimation for Coherent Signals with a Uniform Rectangular Array

A unitary transformation-based algorithm is proposed for two-dimensional (2-D) direction-of-arrival (DOA) estimation of coherent signals. The problem is solved by reorganizing the covariance matrix into a block Hankel one for decorrelation first and then reconstructing a new matrix to facilitate the unitary transformation. By multiplying unitary matrices, eigenvalue decomposition and singular v...

متن کامل

Real-Valued Covariance Vector Sparsity-Inducing DOA Estimation for Monostatic MIMO Radar

In this paper, a real-valued covariance vector sparsity-inducing method for direction of arrival (DOA) estimation is proposed in monostatic multiple-input multiple-output (MIMO) radar. Exploiting the special configuration of monostatic MIMO radar, low-dimensional real-valued received data can be obtained by using the reduced-dimensional transformation and unitary transformation technique. Then,...

متن کامل

Angles of Arrival Estimation with Unitary Partial Propagator

In this paper, we investigated the effect of real valued transformation of the spectral matrix of the received data for Angles Of Arrival estimation problem. Indeed, the unitary transformation of Partial Propagator (UPP) for narrowband sources is proposed and applied on Uniform Linear Array (ULA). Monte Carlo simulations proved the performance of the UPP spectrum comparatively with Forward Back...

متن کامل

A Novel DOA Estimation Approach for Unknown Coherent Source Groups with Coherent Signals

In this paper, a new combination of Minimum Description Length (MDL) or Eigenvalue Gradient Method (EGM), Joint Approximate Diagonalization of Eigenmatrices (JADE) and Modified Forward-Backward Linear Prediction (MFBLP) algorithms is proposed which determines the number of non-coherent source groups and estimates the Direction Of Arrivals (DOAs) of coherent signals in each group. First, the MDL...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Signal Processing

دوره 93  شماره 

صفحات  -

تاریخ انتشار 2013