Hierarchical TiO2–Si nanowire architecture with photoelectrochemical activity under visible light illumination†

نویسندگان

  • Jian Shi
  • Xudong Wang
چکیده

Bandgap engineering of TiO2 is a substantial strategy for efficient water splitting in the visible light range. Introducing dopants and hydrogenation have been found effective for that purpose. In this paper, we report the development of a hierarchical three dimensional TiO2–Si nanowire (NW)-based photoelectrochemical (PEC) anode with visible light photochemical activity. The TiO2 NWs were synthesized using a surface reaction-limited pulsed chemical vapor deposition method (SPCVD) with unbalanced TiCl4 and H2O precursors. Dangling Ti–Cl and Ti–OH groups inside TiO2 NW crystals were suggested to be the reason for band narrowing and visible light absorption. The NW structure with a large aspect ratio was formed via the oriented attachment mechanism, which offered a super-high surface area density. This in situ crystal decoration approach opens a new window to tailoring electrical properties of TiO2 for wider spectrum solar energy harvesting and conversion.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Core/Shell Nanowire Arrays with Enhanced Photoactivity

There are currently great needs to develop low-cost inorganic materials that can efficiently perform solar water splitting as photoelectrolysis of water into hydrogen and oxygen has significant potential to provide clean energy. We investigate the Si/TiO2 nanowire heterostructures to determine their potential for the photooxidation of water. We observed that highly dense Si/TiO2 core/shell nano...

متن کامل

Tailoring n-ZnO/p-Si branched nanowire heterostructures for selective photoelectrochemical water oxidation or reduction.

We report the fabrication of three-dimensional (3D) branched nanowire (NW) heterostructures, consisting of periodically ordered vertical Si NW trunks and ZnO NW branches, and their application for solar water splitting. The branched NW photoelectrodes show orders of magnitudes higher photocurrent compared to the bare Si NW electrodes. More interestingly, selective photoelectrochemical cathodic ...

متن کامل

Visible light-driven water oxidation with a subporphyrin sensitizer and a water oxidation catalyst.

A new subporphyrin was synthesized for use as a molecular sensitizer in electrochemical and dye-sensitized photoelectrochemical water oxidation. A photoelectrochemical cell with a TiO2 electrode modified with the sensitizer and a molecular water oxidation catalyst generated higher photocurrent than reference cells that have electrodes modified with either the photosensitizer or the catalyst und...

متن کامل

Si/InGaN core/shell hierarchical nanowire arrays and their photoelectrochemical properties.

Three-dimensional hierarchical nanostructures were synthesized by the halide chemical vapor deposition of InGaN nanowires on Si wire arrays. Single phase InGaN nanowires grew vertically on the sidewalls of Si wires and acted as a high surface area photoanode for solar water splitting. Electrochemical measurements showed that the photocurrent density with hierarchical Si/InGaN nanowire arrays in...

متن کامل

Three-dimensional high-density hierarchical nanowire architecture for high-performance photoelectrochemical electrodes.

Three-dimensional (3D) nanowire (NW) networks are promising for designing high-performance photoelectrochemical (PEC) electrodes owing to their long optical path for efficient light absorption, high-quality one-dimensional conducting channels for rapid electron-hole separation and charge transportation, as well as high surface areas for fast interfacial charge transfer and electrochemical react...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2012