A numerical model for the description of the lamellar and massive phase transformations in TiAl alloys

نویسندگان

  • A. Rostamian
  • A. Jacot
چکیده

A phenomenological modelling approach has been developed to describe the massive transformation and the formation of lamellar microstructures during cooling in binary g titanium aluminides. The modelling approach is based on a combination of nucleation and growth laws which take into account the specific mechanisms of each phase transformation. Nucleation of massive and lamellar g is described with classical nucleation theory, accounting for the fact that nuclei are formed predominantly at a/ a grain boundaries. Growth of the massive g grains is based on theory for interface-controlled reactions. A modified Zener model is used to calculate the thickening rate of the g lamellar precipitates. The model incorporates the effect of particle impingement and coverage of the nucleation sites by the growing phase. The driving pressures of the phase transformations are obtained from Thermo-Calc based on the actual temperature and matrix composition. CCT diagrams and lamellar spacings calculated with the model are in good agreement with experimental data obtained from dedicated heat treatment experiments and from the literature. The model permitted investigating the influence of cooling rate, alloy chemistry and average a grain size upon the amount of massive g and the average thickness and spacing of the lamellae. In particular it indicates that the Al depletion of the a phase during lamellar precipitation seems to play an important role in the suppression of the massive transformation at moderate cooling rate and in the large lamellar spacings observed at low cooling rate. 2008 Elsevier Ltd. All rights reserved.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Adaptive Tunable Vibration Absorber using Shape Memory Alloy

This study presents a new approach to control the nonlinear dynamics of an adaptive absorber using shape memory alloy (SMA) element. Shape memory alloys are classified as smart materials that can remember their original shape after deformation. Stress and temperature-induced phase transformations are two typical behaviors of shape memory alloys. Changing the stiffness associated with phase tran...

متن کامل

Synthesis of Nanostructure Ti-45Al-5Cr Alloy by Mechanical Alloying and Study the Effect of Cr Addition on Microstructure of TiAl Alloy

In this work, mechanical alloying was employed to produce Ti-50Al and Ti-45Al-5Cr (at%) alloys. Alloying was performed in a planetary mill and the alloying time varying from 5 to 70h. Characterization of the powder mixture was performed by X-ray diffraction (XRD), SEM analyses and DTA test, during mechanical alloying and after annealing at 1100°c in vacuum oven. The results showed, after 50h of...

متن کامل

Influence of heat generation on the phase transformations and impact responses of composite plates with embedded SMA wires

In the present research, in contrast to the available papers, not only the superelasticity but also the shape memory effects are taken into account in determination of the impact responses. At the same time, in addition to modifying Brinson’s model for the shape memory alloys (SMAs), to include new parameters and loading events, and Hertz contact law, distributions of the SMA phases are conside...

متن کامل

First-principles Study of the Mechanical Properties of TiAl-Based Alloys

TiAl-based alloys have been suggested as advanced high-temperature structural materials replacing the Ni-based superalloys, due to their low density, high modulus, good oxidation resistance and creep resistance. However, their poor ductility and toughness at low temperature limits their applications in industry. Generally, controlling the microstructure and alloying elements are the most useful...

متن کامل

MODELLING OF THE PERMEABILITY FOR COLUMNAR DENDRITE STRUCTURES DURING SOLIDIFICATION OF MUSHY ALLOYS

A numerical model has been developed for the determination of liquid flow permeability through columnar dendrite during growth. The model is inclusive two stages, first numerical evolution of the dendrite shape during growth, and second numerical determination of the interdendritic liquid permeability. Simulation results shown which solute concentration by evolution of dendrite shape could resu...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2008