Multi-class Classification with Error Correcting Codes

نویسندگان

  • Jörg Kindermann
  • Gerhard Paass
چکیده

Automatic text categorization has become a vital topic in many applications. Imagine for example the automatic classification of Internet pages for a search engine database. The traditional 1-of-n output coding for classification scheme needs resources increasing linearly with the number of classes. A different solution uses an error correcting code, increasing in length with O(log2(n)) only. In this paper we investigate the potential of error correcting codes for text categorization with many categories. The main result is that multi-class codes have advantages for classes which comprise only a small fraction of the data.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Learning efficient error correcting output codes for large hierarchical multi-class problems

We describe a new approach for dealing with hierarchical classification with a large number of classes. We build on Error Correcting Output Codes and propose two algorithms that learn compact, binary, low dimensional class codes from a similarity information between classes. This allows building classification algorithms that performs similarly or better than the standard and performing one-vs-...

متن کامل

Multi-class Text Categorization with Error Correcting Codes

Automatic text categorization has become a vital topic in many applications. Imagine for example the automatic classi cation of Internet pages for a search engine database. The traditional 1-of-n output coding for classi cation scheme needs resources increasing linearly with the number of classes. A di erent solution uses an error correcting code, increasing in length with O(log2(n)) only. In t...

متن کامل

Optimizing Linear Discriminant Error Correcting Output Codes Using Particle Swarm Optimization

Error Correcting Output Codes reveal an efficient strategy in dealing with multi-class classification problems. According to this technique, a multi-class problem is decomposed into several binary ones. On these created sub-problems we apply binary classifiers and then, by combining the acquired solutions, we are able to solve the initial multiclass problem. In this paper we consider the optimi...

متن کامل

Ranking Error-Correcting Output Codes for Class Retrieval

Error-Correcting Output Codes (ECOC) is a general framework for combining binary classification in order to address the multi-class categorization problem. In this paper, we include contextual and semantic information in the decoding process of the ECOC framework, defining an ECOC-rank methodology. Altering the ECOC output values by means of the adjacency of classes based on features and class ...

متن کامل

Robust Multi-view Face Detection Using Error Correcting Output Codes

This paper presents a novel method to solve multi-view face detection problem by Error Correcting Output Codes (ECOC). The motivation is that face patterns can be divided into separated classes across views, and ECOC multi-class method can improve the robustness of multi-view face detection compared with the view-based methods because of its inherent error-tolerant ability. One key issue with E...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2000