Borel Generators
نویسندگان
چکیده
We use the notion of Borel generators to give alternative methods for computing standard invariants, such as associated primes, Hilbert series, and Betti numbers, of Borel ideals. Because there are generally few Borel generators relative to ordinary generators, this enables one to do manual computations much more easily. Moreover, this perspective allows us to find new connections to combinatorics involving Catalan numbers and their generalizations. We conclude with a surprising result relating the Betti numbers of certain principal Borel ideals to the number of pointed pseudo-triangulations of particular planar point sets.
منابع مشابه
Topological Generators for Full Groups of Hyperfinite Pmp Equivalence Relations
We give an elementary proof that there are two topological generators for the full group of every aperiodic hyperfinite probability measure preserving Borel equivalence relation. Our proof explicitly constructs topological generators for the orbit equivalence relation of the irrational rotation of the circle, and then appeals to Dye’s theorem and a Baire category argument to conclude the genera...
متن کاملFive-value rich lines, Borel directions and uniqueness of meromorphic functions
For a meromorphic function $f$ in the complex plane, we shall introduce the definition of five-value rich line of $f$, and study the uniqueness of meromorphic functions of finite order in an angular domain by involving the five-value rich line and Borel directions. Finally, the relationship between a five-value rich line and a Borel direction is discussed, that is, every Borel direction of $f$ ...
متن کاملCayley graphs of finitely generated groups
There does not exist a Borel choice of generators for each finitely generated group which has the property that isomorphic groups are assigned isomorphic Cayley graphs.
متن کاملFinite Generators for Countable Group Actions in the Borel and Baire Category Settings
For a continuous action of a countable discrete group G on a Polish space X, a countable Borel partition P of X is called a generator if GP ∶= {gP ∶ g ∈ G,P ∈ P} generates the Borel σ-algebra of X. For G = Z, the Kolmogorov–Sinai theorem gives a measuretheoretic obstruction to the existence of finite generators: they do not exist in the presence of an invariant probability measure with infinite...
متن کاملUniformity, Universality, and Computability Theory
We prove a number of results motivated by global questions of uniformity in computability theory, and universality of countable Borel equivalence relations. Our main technical tool is a game for constructing functions on free products of countable groups. We begin by investigating the notion of uniform universality, first proposed by Montalbán, Reimann and Slaman. This notion is a strengthened ...
متن کامل