Hydrophobic-hydrophilic dichotomy of the butterfly proboscis.

نویسندگان

  • Matthew S Lehnert
  • Daria Monaenkova
  • Taras Andrukh
  • Charles E Beard
  • Peter H Adler
  • Konstantin G Kornev
چکیده

Mouthparts of fluid-feeding insects have unique material properties with no human-engineered analogue: the feeding devices acquire sticky and viscous liquids while remaining clean. We discovered that the external surface of the butterfly proboscis has a sharp boundary separating a hydrophilic drinking region and a hydrophobic non-drinking region. The structural arrangement of the proboscis provides the basis for the wetting dichotomy. Theoretical and experimental analyses show that fluid uptake is associated with enlargement of hydrophilic cuticular structures, the legulae, which link the two halves of the proboscis together. We also show that an elliptical proboscis produces a higher external meniscus than does a cylindrical proboscis of the same circumference. Fluid uptake is additionally facilitated in sap-feeding butterflies that have a proboscis with enlarged chemosensory structures forming a brush near the tip. This structural modification of the proboscis enables sap feeders to exploit films of liquid more efficiently. Structural changes along the proboscis, including increased legular width and presence of a brush-like tip, occur in a wide range of species, suggesting that a wetting dichotomy is widespread in the Lepidoptera.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Modifying the anti-wetting property of butterfly wings and water strider legs by atomic layer deposition coating: surface materials versus geometry.

Although butterfly wings and water strider legs have an anti-wetting property, their working conditions are quite different. Water striders, for example, live in a wet environment and their legs need to support their weight and bear the high pressure during motion. In this work, we have focused on the importance of the surface geometrical structures in determining their performance. We have app...

متن کامل

The Effect of Hydrophobicity and Hydrophilicity of Gold Nanoparticle on Proteins Structure and Function

The surface parameter of nanoparticles such as hydrophobicity and a hydrophilicity on protein structure and function is very important. In this study, conformational changes of glucose oxidase (GOx) in the mercaptopurine: GNPs and 11-mercaptoundecanoic acid: GNPs as a hydrophobic and a hydrophilic GNPs surface was investigated by various spectroscopic techniques, including: UV-Vis absorption, f...

متن کامل

Paradox of the drinking-straw model of the butterfly proboscis.

Fluid-feeding Lepidoptera use an elongated proboscis, conventionally modeled as a drinking straw, to feed from pools and films of liquid. Using the monarch butterfly, Danaus plexippus (Linnaeus), we show that the inherent structural features of the lepidopteran proboscis contradict the basic assumptions of the drinking-straw model. By experimentally characterizing permeability and flow in the p...

متن کامل

The Effect of Hydrophobicity and Hydrophilicity of Gold Nanoparticle on Proteins Structure and Function

The surface parameter of nanoparticles such as hydrophobicity and a hydrophilicity on protein structure and function is very important. In this study, conformational changes of glucose oxidase (GOx) in the mercaptopurine: GNPs and 11-mercaptoundecanoic acid: GNPs as a hydrophobic and a hydrophilic GNPs surface was investigated by various spectroscopic techniques, including: UV-Vis absorption, f...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Journal of the Royal Society, Interface

دوره 10 85  شماره 

صفحات  -

تاریخ انتشار 2013