Entropy-Inspired Competitive Clustering Algorithms
نویسندگان
چکیده
In this paper, the well-known competitive clustering algorithm (CA) is revisited and reformulated from a point of view of entropy minimization. That is, the second term of the objective function in CA can be seen as quadratic or second-order entropy. Along this novel explanation, two generalized competitive clustering algorithms inspired by Renyi entropy and Shannon entropy, i.e. RECA and SECA, are respectively proposed in this paper. Simulation results show that CA requires a large number of initial clusters to obtain the right number of clusters, while RECA and SECA require small and moderate number of initial clusters respectively. Also the iteration steps in RECA and SECA are less than that of CA. Further CA and RECA are generalized to CA-p and RECA-p by using the p-order entropy and Renyi’s p-order entropy in CA and RECA respectively. Simulation results show that the value of p has a great impact on the performance of CA-p, whereas it has little influence on that of RECA-p.
منابع مشابه
Multi-layer Clustering Topology Design in Densely Deployed Wireless Sensor Network using Evolutionary Algorithms
Due to the resource constraint and dynamic parameters, reducing energy consumption became the most important issues of wireless sensor networks topology design. All proposed hierarchy methods cluster a WSN in different cluster layers in one step of evolutionary algorithm usage with complicated parameters which may lead to reducing efficiency and performance. In fact, in WSNs topology, increasin...
متن کاملFuzzy entropy-constrained competitive learning algorithm
A novel variable-rate vector quantizer (VQ) design algorithm using both fuzzy and competitive learning technique is presented. The algorithm enjoys better rate-distortion performance than that of other existing fuzzy clustering and competitive learning algorithms. In addition, the learning algorithm is less sensitive to the selection of initial reproduction vectors. Therefore, the algorithm can...
متن کاملخوشهبندی خودکار دادهها با بهرهگیری از الگوریتم رقابت استعماری بهبودیافته
Imperialist Competitive Algorithm (ICA) is considered as a prime meta-heuristic algorithm to find the general optimal solution in optimization problems. This paper presents a use of ICA for automatic clustering of huge unlabeled data sets. By using proper structure for each of the chromosomes and the ICA, at run time, the suggested method (ACICA) finds the optimum number of clusters while optim...
متن کاملHybrid Bio-Inspired Clustering Algorithm for Energy Efficient Wireless Sensor Networks
In order to achieve the sensing, communication and processing tasks of Wireless Sensor Networks, an energy-efficient routing protocol is required to manage the dissipated energy of the network and to minimalize the traffic and the overhead during the data transmission stages. Clustering is the most common technique to balance energy consumption amongst all sensor nodes throughout the network. I...
متن کاملUse of the Improved Frog-Leaping Algorithm in Data Clustering
Clustering is one of the known techniques in the field of data mining where data with similar properties is within the set of categories. K-means algorithm is one the simplest clustering algorithms which have disadvantages sensitive to initial values of the clusters and converging to the local optimum. In recent years, several algorithms are provided based on evolutionary algorithms for cluster...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Int. J. Software and Informatics
دوره 1 شماره
صفحات -
تاریخ انتشار 2007