Sphingosine 1-phosphate signaling is involved in skeletal muscle regeneration.
نویسندگان
چکیده
Sphingosine 1-phosphate (S1P) is a bioactive lipid known to control cell growth that was recently shown to act as a trophic factor for skeletal muscle, reducing the progress of denervation atrophy. The aim of this work was to investigate whether S1P is involved in skeletal muscle fiber recovery (regeneration) after myotoxic injury induced by bupivacaine. The postnatal ability of skeletal muscle to grow and regenerate is dependent on resident stem cells called satellite cells. Immunofluorescence analysis demonstrated that S1P-specific receptors S1P(1) and S1P(3) are expressed by quiescent satellite cells. Soleus muscles undergoing regeneration following injury induced by intramuscular injection of bupivacaine exhibited enhanced expression of S1P(1) receptor, while S1P(3) expression progressively decreased to adult levels. S1P(2) receptor was absent in quiescent cells but was transiently expressed in the early regenerating phases only. Administration of S1P (50 microM) at the moment of myotoxic injury caused a significant increase of the mean cross-sectional area of regenerating fibers in both rat and mouse. In separate experiments designed to test the trophic effects of S1P, neutralization of endogenous circulating S1P by intraperitoneal administration of anti-S1P antibody attenuated fiber growth. Use of selective modulators of S1P receptors indicated that S1P(1) receptor negatively and S1P(3) receptor positively modulate the early phases of regeneration, whereas S1P(2) receptor appears to be less important. The present results show that S1P signaling participates in the regenerative processes of skeletal muscle.
منابع مشابه
Sphingosine 1-phosphate axis: a new leader actor in skeletal muscle biology
Sphingosine 1-phosphate (S1P) is a bioactive lipid involved in the regulation of biological processes such as proliferation, differentiation, motility, and survival. Here we review the role of S1P in the biology and homeostasis of skeletal muscle. S1P derives from the catabolism of sphingomyelin and is produced by sphingosine phosphorylation catalyzed by sphingosine kinase (SK). S1P can act eit...
متن کاملEntry of muscle satellite cells into the cell cycle requires sphingolipid signaling
Adult skeletal muscle is able to repeatedly regenerate because of the presence of satellite cells, a population of stem cells resident beneath the basal lamina that surrounds each myofiber. Little is known, however, of the signaling pathways involved in the activation of satellite cells from quiescence to proliferation, a crucial step in muscle regeneration. We show that sphingosine-1-phosphate...
متن کاملMesenchymal Stromal Cell Secreted Sphingosine 1-Phosphate (S1P) Exerts a Stimulatory Effect on Skeletal Myoblast Proliferation
Bone-marrow-derived mesenchymal stromal cells (MSCs) have the potential to significantly contribute to skeletal muscle healing through the secretion of paracrine factors that support proliferation and enhance participation of the endogenous muscle stem cells in the process of repair/regeneration. However, MSC-derived trophic molecules have been poorly characterized. The aim of this study was to...
متن کاملRegulation of transient receptor potential canonical channel 1 (TRPC1) by sphingosine 1-phosphate in C2C12 myoblasts and its relevance for a role of mechanotransduction in skeletal muscle differentiation.
Transient receptor potential canonical (TRPC) channels provide cation and Ca(2+) entry pathways, which have important regulatory roles in many physio-pathological processes, including muscle dystrophy. However, the mechanisms of activation of these channels remain poorly understood. Using siRNA, we provide the first experimental evidence that TRPC channel 1 (TRPC1), besides acting as a store-op...
متن کاملSphingosine-1-phosphate receptor 3 influences cell cycle progression in muscle satellite cells
Skeletal muscle retains a resident stem cell population called satellite cells, which are mitotically quiescent in mature muscle, but can be activated to produce myoblast progeny for muscle homeostasis, hypertrophy and repair. We have previously shown that satellite cell activation is partially controlled by the bioactive phospholipid, sphingosine-1-phosphate, and that S1P biosynthesis is requi...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- American journal of physiology. Cell physiology
دوره 298 3 شماره
صفحات -
تاریخ انتشار 2010