Hamiltonian cycles in 3-connected Claw-free graphs
نویسندگان
چکیده
It is shown that every 3-connected claw-free graph having at most 6 − 7 vertices is hamiltonian, where is the minimum degree. c © 2002 Elsevier Science B.V. All rights reserved.
منابع مشابه
Hamilton cycles in 5-connected line graphs
A conjecture of Carsten Thomassen states that every 4-connected line graph is hamiltonian. It is known that the conjecture is true for 7-connected line graphs. We improve this by showing that any 5-connected line graph of minimum degree at least 6 is hamiltonian. The result extends to claw-free graphs and to Hamilton-connectedness.
متن کاملOn 3-connected hamiltonian line graphs
Thomassen conjectured that every 4-connected line graph is hamiltonian. It has been proved that every 4-connected line graph of a claw-free graph, or an almost claw-free graph, or a quasi-claw-free graph, is hamiltonian. In 1998, Ainouche et al. [2] introduced the class of DCT graphs, which properly contains both the almost claw-free graphs and the quasi-claw-free graphs. Recently, Broersma and...
متن کاملHourglasses and Hamilton cycles in 4-connected claw-free graphs
We show that if G is a 4-connected claw-free graph in which every induced hourglass subgraph S contains two non-adjacent vertices with a common neighbor outside S, then G is hamiltonian. This extends the fact that 4-connected claw-free, hourglass-free graphs are hamiltonian, thus proving a broader special case of a conjecture by Matthews and Sumner.
متن کاملClaw-free 3-connected P11-free graphs are hamiltonian
We show that every 3-connected claw-free graph which contains no induced copy of P11 is hamiltonian. Since there exist non-hamiltonian 3-connected claw-free graphs without induced copies of P12 this result is, in a way, best possible. 1. Statement of the main result A graph G is {H1, H2, . . . Hk}-free if G contains no induced subgraphs isomorphic to any of the graphs Hi, i = 1, 2, . . . , k. A...
متن کاملExtending Cycles Locally to Hamilton Cycles
A Hamilton circle in an infinite graph is a homeomorphic copy of the unit circle S1 that contains all vertices and all ends precisely once. We prove that every connected, locally connected, locally finite, claw-free graph has such a Hamilton circle, extending a result of Oberly and Sumner to infinite graphs. Furthermore, we show that such graphs are Hamilton-connected if and only if they are 3-...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Journal of Graph Theory
دوره 17 شماره
صفحات -
تاریخ انتشار 1993