High-frequency sensitivity of the mature gerbil cochlea and its development.
نویسندگان
چکیده
The thresholds of compound action potentials evoked by tone pips were measured in the cochleae of anesthetized gerbils, both in adults and in neonates aged 14, 16, 18, 20 and 30 days, using round-window electrodes. Stapes vibrations were also measured, using a laser velocimeter, in many of the same ears of adults and neonates aged 14, 16, 18 and 20 days to assess cochlear sensitivity in isolation from middle ear effects and to circumvent problems associated with calibration of acoustic stimuli at high frequencies. Whether referenced to sound pressure level in the ear canal or stapes vibration velocity, thresholds in adults were roughly uniform in the entire range of tested frequencies, 1.25-38.5 kHz. In neonates, thresholds decreased systematically as a function of age, with the largest reductions occurring at the highest frequencies. Thresholds remained slightly immature at all frequencies 30 days after birth. The results for adult gerbils are consistent with the recent finding that basilar-membrane responses to characteristic frequency tones normalized to stapes vibrations are as sensitive at sites near the round window as at more apical sites. The results for neonates confirm that the extreme basal region of the cochlea is the last to approach maturity, with substantial development occurring between 20 and 30 days after birth.
منابع مشابه
Localization of the Cochlear Amplifier in Living Sensitive Ears
BACKGROUND To detect soft sounds, the mammalian cochlea increases its sensitivity by amplifying incoming sounds up to one thousand times. Although the cochlear amplifier is thought to be a local cellular process at an area basal to the response peak on the spiral basilar membrane, its location has not been demonstrated experimentally. METHODOLOGY AND PRINCIPAL FINDINGS Using a sensitive laser...
متن کاملFunctional maturation of the exocytotic machinery at gerbil hair cell ribbon synapses
Auditory afferent fibre activity in mammals relies on neurotransmission at hair cell ribbon synapses. Developmental changes in the Ca(2+) sensitivity of the synaptic machinery allow inner hair cells (IHCs), the primary auditory receptors, to encode Ca(2+) action potentials (APs) during pre-hearing stages and graded receptor potentials in adult animals. However, little is known about the time co...
متن کاملDevelopment of otoacoustic emissions in gerbil: evidence for micromechanical changes underlying development of the place code.
The development of the acoustic distortion product (ADP) 2f1-f2 was studied in gerbils, beginning 12 days after birth (P12). ADPs were measured as a function of stimulus frequency region (1.0 to 13.0 kHz) and level (10 to 80 dB SPL). There was an orderly progression in the appearance and maturation of the emissions, with responses to high-frequency stimuli (f2 = 13.0 kHz) appearing first, at P1...
متن کاملThe relationship between ultra-high frequency thresholds and transient evoked otoacoustic emissions in adults with tinnitus
Background: The possible role of cochlear function in tinnitus generation is still a matter of debate. To assess the role of outer hair cell dysfunction in tinnitus and its possible relationship with ultra-high frequency (UHF) hearing sensitivity, transient evoked otoacoustic emissions (TEOAE) and UHF hearing thresholds were investigated in normal hearing individuals with and withou...
متن کاملAll Three Rows of Outer Hair Cells Are Required for Cochlear Amplification
In the mammalian auditory system, the three rows of outer hair cells (OHCs) located in the cochlea are thought to increase the displacement amplitude of the organ of Corti. This cochlear amplification is thought to contribute to the high sensitivity, wide dynamic range, and sharp frequency selectivity of the hearing system. Recent studies have shown that traumatic stimuli, such as noise exposur...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Audiology & neuro-otology
دوره 8 1 شماره
صفحات -
تاریخ انتشار 2003