Secreted 3-isopropylmalate methyl ester signals invasive growth during amino acid starvation in Saccharomyces cerevisiae.

نویسندگان

  • Darren S Dumlao
  • Nicholas Hertz
  • Steven Clarke
چکیده

The Saccharomyces cerevisiae methyltransferase encoded by TMT1 catalyzes the AdoMet-dependent monomethylation of 3-isopropylmalate, an intermediate of the leucine biosynthetic pathway. The biological significance of methylating 3-isopropylmalate and the relationship between Tmt1 and the leucine biosynthetic pathway is not yet established. We present evidence here showing that methylation of 3-isopropylmalate functions to extracellularly signal yeast to grow invasively. We show that methyl esterification generates 3-isopropylmalate-1-methyl ester. We find that the Tmt1 methyltransferase functions independently of the biosynthetic pathway but is induced when cells are starved for amino acids; the largest induction is observed with the removal of leucine from the media. This amino acid starvation stress response is controlled by the transcriptional activator Gcn4. After methylation, 3-isopropylmalate methyl ester is secreted into the media within 3 h. Thin layer chromatography and gas chromatography mass spectroscopy confirm that the intact molecule is secreted. Finally, we show that purified 3-isopropylmalate methyl ester can enhance the ability of the haploid yeast strain 10560-23C to grow invasively. Our data identifies 3-isopropylmalate methyl ester as an autoinductive molecule that provides a signal to yeast to switch from vegetative to invasive growth in response to amino acid starvation.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

3-Isopropylmalate is the major endogenous substrate of the Saccharomyces cerevisiae trans-aconitate methyltransferase.

The Saccharomyces cerevisiae Tmt1 gene product is the yeast homologue of the Escherichia coli enzyme that catalyzes the methyl esterification of trans-aconitate, a thermodynamically favored isomer of cis-aconitate and an inhibitor of the citric acid cycle. It has been proposed that methylation may attenuate trans-aconitate inhibition of aconitase and other enzymes of the cycle. Although trans-a...

متن کامل

Identification of Genes in Saccharomyces cerevisiae that Are Haploinsufficient for Overcoming Amino Acid Starvation

The yeast Saccharomyces cerevisiae responds to amino acid deprivation by activating a pathway conserved in eukaryotes to overcome the starvation stress. We have screened the entire yeast heterozygous deletion collection to identify strains haploinsufficient for growth in the presence of sulfometuron methyl, which causes starvation for isoleucine and valine. We have discovered that cells devoid ...

متن کامل

Amino acid starvation and Gcn4p regulate adhesive growth and FLO11 gene expression in Saccharomyces cerevisiae.

In baker's yeast Saccharomyces cerevisiae, cell-cell and cell-surface adhesion are required for haploid invasive growth and diploid pseudohyphal development. These morphogenetic events are induced by starvation for glucose or nitrogen and require the cell surface protein Flo11p. We show that amino acid starvation is a nutritional signal that activates adhesive growth and expression of FLO11 in ...

متن کامل

Macromolecular synthesis in Saccharomyces cerevisiae in different growth media.

Synthesis of ribonucleic acid (RNA), deoxyribonucleic acid (DNA), and protein was determined in Saccharomyces cerevisiae during amino acid and pyrimidine starvation and during shift-up and shift-down conditions. During amino acid starvation, cell mass, cell number, and RNA continued to increase for varying periods. During amino acid and pyrimidine starvation, cell mass and RNA showed little inc...

متن کامل

Identification of in vivo enzyme activities in the cometabolism of glucose and acetate by Saccharomyces cerevisiae by using 13C-labeled substrates.

A detailed characterization of the central metabolic network of Saccharomyces cerevisiae CEN.PK 113-7D was carried out during cometabolism of different mixtures of glucose and acetate, using aerobic C-limited chemostats in which one of these two substrates was labeled with (13)C. To confirm the role of malic enzyme, an isogenic strain with the corresponding gene deleted was grown under the same...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Biochemistry

دوره 47 2  شماره 

صفحات  -

تاریخ انتشار 2008