Influence of three-dimensional nanoparticle branching on the Young's modulus of nanocomposites: Effect of interface orientation.
نویسندگان
چکیده
With the availability of nanoparticles with controlled size and shape, there has been renewed interest in the mechanical properties of polymer/nanoparticle blends. Despite the large number of theoretical studies, the effect of branching for nanofillers tens of nanometers in size on the elastic stiffness of these composite materials has received limited attention. Here, we examine the Young's modulus of nanocomposites based on a common block copolymer (BCP) blended with linear nanorods and nanoscale tetrapod Quantum Dots (tQDs), in electrospun fibers and thin films. We use a phenomenological lattice spring model (LSM) as a guide in understanding the changes in the Young's modulus of such composites as a function of filler shape. Reasonable agreement is achieved between the LSM and the experimental results for both nanoparticle shapes--with only a few key physical assumptions in both films and fibers--providing insight into the design of new nanocomposites and assisting in the development of a qualitative mechanistic understanding of their properties. The tQDs impart the greatest improvements, enhancing the Young's modulus by a factor of 2.5 at 20 wt.%. This is 1.5 times higher than identical composites containing nanorods. An unexpected finding from the simulations is that both the orientation of the nanoscale filler and the orientation of X-type covalent bonds at the nanoparticle-ligand interface are important for optimizing the mechanical properties of the nanocomposites. The tQD provides an orientational optimization of the interfacial and filler bonds arising from its three-dimensional branched shape unseen before in nanocomposites with inorganic nanofillers.
منابع مشابه
A Two-Step Methodology to Study the Influence of Aggregation/Agglomeration of Nanoparticles on Young’s Modulus of Polymer Nanocomposites
A two-step technique based on micromechanical models is suggested to determine the influence of aggregated/agglomerated nanoparticles on Young's modulus of polymer nanocomposites. The nanocomposite is assumed to include nanoparticle aggregation/agglomeration and effective matrix phases. This method is examined for different samples, and the effects of important parameters on the modulus are inv...
متن کاملشبیهسازی خواص الاستیک نانوکامپوزیت پلیمر- رس
In this research, stiffness of polymer-clay nanocomposites was simulated by Mori-Tanaka and two and three dimensional finite element models. Nanoclays were dispersed into polymer matrix in two ways, namely parallel and random orientations toward loading direction. Effects of microstructural parameters including volume fraction of nanoclays, elastic modulus of nanoclays and interphase, thickness...
متن کاملInfluence of Interface Thermal Resistance on Relaxation Dynamics of Metal-Dielectric Nanocomposite Materials under Ultrafast Pulse Laser Excitation
Nanocomposite materials, including noble metal nanoparticles embedded in a dielectric host medium, are interesting because of their optical properties linked to surface plasmon resonance phenomena. For studding of nonlinear optical properties and/or energy transfer process, these materials may be excited by ultrashort pulse laser with a temporal width varying from some femtoseconds to some hund...
متن کاملThermo-mechanical properties of polymer nanocomposites reinforced with randomly distributed silica nanoparticles- Micromechanical analysis
A three-dimensional micromechanics-based analytical model is developed to study thermo-mechanical properties of polymer composites reinforced with randomly distributed silica nanoparticles. Two important factors in nanocomposites modeling using micromechanical models are nanoparticle arrangement in matrix and interphase effects. In order to study these cases, representative volume element (RVE)...
متن کاملFinite element modeling of polymer matrix nano-composites reinforced by nano-cylindrical fillers
A new three-dimensional unit cell model has been developed for modeling three constituent phases including inclusion, interphase and matrix. The total elastic modulus of nano-composite is evaluated. Numerical results are in good agreement with the previous proposed theoretical modeling. Higher matrix and inclusion elastic modulus both can dramatically influence the total elastic modulus.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Proceedings of the National Academy of Sciences of the United States of America
دوره 112 21 شماره
صفحات -
تاریخ انتشار 2015