Effect of collimator and couch angle change on breast IMRT dose distributions
نویسندگان
چکیده
Intensity modulated tangential photon beams for breast cancer treatment can improve the dose uniformity significantly throughout the whole breast and reduce the dose to the lung and the heart comparing with the conventional technique. Before the first treatment, patient setup may require a change on the collimator angle and/or the couch angle based on the chest wall coverage according to the port films. The objective of this work is to investigate the effects of the collimator and the couch angle change on the dose distribution for breast cancer treatment using intensity modulated tangential photon beams, and thus to determine the clinical acceptable range of the angle change for routine treatment. Ten breast cases treated with intensity modulated tangential photon beams were analyzed in this study. Patient-specific CT data and the RTP files obtained from our home-grown Monte Carlo based breast IMRT treatment planning system were used for IMRT dose re-calculation with collimator or couch angle changes. The isodose distributions and DVHs were compared with the original plans and the effects of the collimator and couch angle change to breast IMRT dose distributions were evaluated. Our results show that a 4-degree change in the collimator angle or the couch angle did not affect the dose distribution significantly and it is acceptable in the clinic for patient treatment.
منابع مشابه
The Dosimetric Effects of Different Multileaf Collimator Widths on Physical Dose Distributions
Introduction: Geometric changes in the multileaf collimator (MLC) led to dosimetric considerations in intensity-modulated radiation therapy (IMRT) due to the number and size of the pixels in the intensity map, which are determined by the MLC leaf width. In this study, we evaluated the dosimetric effects of different MLC widths on physical dose distributions for IMRT plans. Materials and Method...
متن کاملA new mathematical model for intensity matrix decomposition using multileaf collimator
Cancer is one of the major causes of death all over the globe and radiotherapy is considered one of its most effective treatment methods. Designing a radiotherapy treatment plan was done entirely manually in the past. RecentlyIntensity Modulated Radiation Therapy (IMRT) was introduced as a new technology with advanced medical equipmentin the recent years. IMRT provides the opportunity to delive...
متن کاملQuantifying the effect of intrafraction motion during breast IMRT planning and dose delivery.
Respiratory motion during intensity modulated radiation therapy (IMRT) causes two types of problems. First, the clinical target volume (CTV) to planning target volume (PTV) margin needed to account for respiratory motion means that the lung and heart dose is higher than would occur in the absence of such motion. Second, because respiratory motion is not synchronized with multileaf collimator (M...
متن کاملIncorporation of gantry angle correction for 3D dose prediction in intensity-modulated radiation therapy
Pretreatment dose verification with beam-by-beam analysis for intensity-modulated radiation therapy (IMRT) is commonly performed with a gantry angle of 0° using a 2D diode detector array. Any changes in multileaf collimator (MLC) position between the actual treatment gantry angle and 0° may result in deviations from the planned dose. We evaluated the effects of MLC positioning errors between th...
متن کاملDosimetric Effect Resulting From the Collimator Angle, the Isocenter Move, and the Gantry Angle Errors
Introduction: Dose distribution can be affected by diverse parameters, such as beam orientations, and collimator angles. These parameters should respect and maintain the international recommended levels during the realization of the quality assurance protocols of linear accelerators. This study aimed at evaluating the dosimetric effects on treatment quality considering...
متن کامل