The chitin synthase FgChs2 and other FgChss co-regulate vegetative development and virulence in F. graminearum
نویسندگان
چکیده
Fusarium graminearum contains eight chitin synthase (Chs) genes belonging to seven classes. Previous studies have found that deletion of FgChs3b is lethal to F. graminearum, and deletion of FgChs1, FgChs2, FgChs7 and FgChs5 caused diverse defects in chitin content, mycelial growth, conidiation, virulence or stress responses. However, little is known about the functional relationships among these FgChss. In this study, FgChs2 deletion mutant ΔFgChs2 exhibited reduced mycelial growth and virulence as reported previously. In addition, we found that the mutant produced thickened and "wavy" septa. Quantitative real-time PCR (qRT-PCR) assays showed that the expression levels of FgChs1, FgChs3a, FgChs4, FgChs7, FgChs5 and FgChs6 in ΔFgChs2 were significantly higher than those in the wild type. Therefore, we generated six double deletion mutants of FgChs2 and each of the above six FgChss, and found that FgChs2 shares a function with FgChs1 in regulating mycelial growth, and co-regulates conidiation with FgChs1, FgChs4, FgChs7 and FgChs5. Furthermore, FgChs2 and other six FgChss have overlapped functions in virulence, DON production and septum formation. Taken together, these results indicate that although each chitin synthase of F. graminearum plays certain roles, FgChss may co-regualte various cellular processes in F. graminearum.
منابع مشابه
Functional analyses of heterotrimeric G protein Gα and Gβ subunits in Gibberella zeae
The homothallic ascomycete fungus Gibberella zeae (anamorph: Fusarium graminearum) is a major toxigenic plant pathogen that causes head blight disease on small-grain cereals. The fungus produces the mycotoxins deoxynivalenol (DON) and zearalenone (ZEA) in infected hosts, posing a threat to human and animal health. Despite its agricultural and toxicological importance, the molecular mechanisms u...
متن کاملInvolvement of the anucleate primary sterigmata protein FgApsB in vegetative differentiation, asexual development, nuclear migration, and virulence in Fusarium graminearum.
The protein ApsB has been shown to play critical roles in the migration and positioning of nuclei and in the development of conidiophores in Aspergillus nidulans. The functions of ApsB in Fusarium graminearum, a causal agent of Fusarium head blight in China, are largely unknown. In this study, we used the blastp program at the Broad Institute to identify FgApsB, an F. graminearum homolog of A. ...
متن کاملThe TOR signaling pathway regulates vegetative development and virulence in Fusarium graminearum.
The target of rapamycin (TOR) signaling pathway plays critical roles in controlling cell growth in a variety of eukaryotes. However, the contribution of this pathway in regulating virulence of plant pathogenic fungi is unknown. We identified and characterized nine genes encoding components of the TOR pathway in Fusarium graminearum. Biological, genetic and biochemical functions of each componen...
متن کاملAbaA Regulates Conidiogenesis in the Ascomycete Fungus Fusarium graminearum
Fusarium graminearum (teleomorph Gibberella zeae) is a prominent pathogen that infects major cereal crops such as wheat, barley, and maize. Both sexual (ascospores) and asexual (conidia) spores are produced in F. graminearum. Since conidia are responsible for secondary infection in disease development, our objective of the present study was to reveal the molecular mechanisms underlying conidiog...
متن کاملRole of chitin synthase genes in Fusarium oxysporum.
Three structural chitin synthase genes, chs1, chs2 and chs3, were identified in the genome of Fusarium oxysporum f. sp. lycopersici, a soilborne pathogen causing vascular wilt disease in tomato plants. Based on amino acid identities with related fungal species, chs1, chs2 and chs3 encode structural chitin synthases (CSs) of class I, class II and class III, respectively. A gene (chs7) encoding a...
متن کامل