Codon-specific translational defect caused by a wobble modification deficiency in mutant tRNA from a human mitochondrial disease.

نویسندگان

  • Yohei Kirino
  • Takehiro Yasukawa
  • Shigeo Ohta
  • Shigeo Akira
  • Kaisuke Ishihara
  • Kimitsuna Watanabe
  • Tsutomu Suzuki
چکیده

Point mutations in the mitochondrial (mt) tRNA(Leu(UUR)) gene are responsible for mitochondrial myopathy, encephalopathy, lactic acidosis, and stroke-like episodes (MELAS), a subgroup of mitochondrial encephalomyopathic diseases. We previously showed that mt tRNA(Leu(UUR)) with an A3243G or T3271C mutation derived from patients with MELAS are deficient in a normal taurine-containing modification (taum5U; 5-taurinomethyluridine) at the anticodon wobble position. To examine decoding disorder of the mutant tRNA due to the wobble modification deficiency independent of the pathogenic point mutation itself, we used a molecular surgery technique to construct an mt tRNA(Leu(UUR)) molecule lacking the taurine modification but without the pathogenic mutation. This "operated" mt tRNA(Leu(UUR)) without the taurine modification showed severely reduced UUG translation but no decrease in UUA translation. We thus concluded that the UUG codon-specific translational defect of the mutant mt tRNAs(Leu(UUR)) is the primary cause of MELAS at the molecular level. This result could explain the complex I deficiency observed clinically in MELAS.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Acquisition of the wobble modification in mitochondrial tRNALeu(CUN) bearing the G12300A mutation suppresses the MELAS molecular defect.

The A3243G mutation in the mitochondrial gene for human mitochondrial (mt) tRNA(Leu(UUR)), responsible for decoding of UUR codons, is associated with mitochondrial myopathy, encephalopathy, lactic acidosis and stroke-like episodes (MELAS). We previously demonstrated that this mutation causes defects in 5-taurinomethyluridine (taum(5)U) modification at the anticodon first (wobble) position of th...

متن کامل

Codon-biased translation can be regulated by wobble-base tRNA modification systems during cellular stress responses.

tRNA (tRNA) is a key molecule used for protein synthesis, with multiple points of stress-induced regulation that can include transcription, transcript processing, localization and ribonucleoside base modification. Enzyme-catalyzed modification of tRNA occurs at a number of base and sugar positions and has the potential to influence specific anticodon-codon interactions and regulate translation....

متن کامل

Modified uridines with C5-methylene substituents at the first position of the tRNA anticodon stabilize U.G wobble pairing during decoding.

Post-transcriptional modifications at the first (wobble) position of the tRNA anticodon participate in precise decoding of the genetic code. To decode codons that end in a purine (R) (i.e. NNR), tRNAs frequently utilize 5-methyluridine derivatives (xm(5)U) at the wobble position. However, the functional properties of the C5-substituents of xm(5)U in codon recognition remain elusive. We previous...

متن کامل

Specific correlation between the wobble modification deficiency in mutant tRNAs and the clinical features of a human mitochondrial disease.

Mutations in mtDNA are responsible for a variety of mitochondrial diseases, where the mitochondrial tRNA(Leu(UUR)) gene has especially hot spots for pathogenic mutations. Clinical features often depend on the tRNA species and/or positions of the mutations; however, molecular pathogenesis elucidating the relation between the location of the mutations and their leading phenotype are not fully und...

متن کامل

Defective i6A37 Modification of Mitochondrial and Cytosolic tRNAs Results from Pathogenic Mutations in TRIT1 and Its Substrate tRNA

Identifying the genetic basis for mitochondrial diseases is technically challenging given the size of the mitochondrial proteome and the heterogeneity of disease presentations. Using next-generation exome sequencing, we identified in a patient with severe combined mitochondrial respiratory chain defects and corresponding perturbation in mitochondrial protein synthesis, a homozygous p.Arg323Gln ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Proceedings of the National Academy of Sciences of the United States of America

دوره 101 42  شماره 

صفحات  -

تاریخ انتشار 2004