Three Dimensional Structure and Energy Balance of a Coronal Mass Ejection

نویسندگان

  • J.-Y. Lee
  • J. C. Raymond
چکیده

The Ultraviolet Coronagraph Spectrometer (UVCS) observed Doppler shifted material of a partial Halo Coronal Mass Ejection (CME) on December 13 2001. The observed ratio of [O V]/O V] is a reliable density diagnostic important for assessing the state of the plasma. Earlier UVCS observations of CMEs found evidence that the ejected plasma is heated long after the eruption. We have investigated the heating rates, which represent a significant fraction of the CME energy budget. The parameterized heating and radiative and adiabatic cooling have been used to evaluate the temperature evolution of the CME material with a time dependent ionization state model. The functional form of a flux rope model for interplanetary magnetic clouds was also used to parameterize the heating. We find that continuous heating is required to match the UVCS observations. To match the O VI-bright knots, a higher heating rate is required such that the heating energy is greater than the kinetic energy. The temperatures for the knots bright in Lyα and C III emission indicate that smaller heating rates are required for those regions. In the context of the flux rope model, about 75% of the magnetic energy must go into heat in order to match the O VI observations. We derive tighter constraints on the heating than earlier analyses, and we show that thermal conduction with the Spitzer conductivity is not sufficient to account for the heating at large heights. Subject headings: Sun: coronal mass ejections(CMEs) — Sun: activity — Sun: corona — Sun: UV radiation Dept. of Astronomy and Space Science, Kyung Hee University, Yongin, Gyeonggi, 446-701, Korea Harvard-Smithsonian Center for Astrophysics, Cambridge, MA 02138 NorthWest Research Associates, CoRA Division, Boulder, CO 80301

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Solar Mini-Dimming Kinematics and Their Positive Correlations with Coronal Mass Ejections and Prominence

Solar mini-dimmings can be detect in the Extreme Ultra-Violet coronal eruptions. Here, sequences of 171_A images taken by Solar Dynamic Observatory/Atmospheric Imaging Assembaly on 13 June 2010 are used. In this special day, both of coronal mass ejection and prominence were observed. The average velocities and accelerations of 500 mini-dimmings which were detected using on feature based classif...

متن کامل

Interplanetary Coronal Mass Ejections Observed in the Heliosphere: 3. Physical Implications

We conclude the heliospheric image series with this third and final instalment, where we consider the physical implications of our reconstruction of interplanetary coronal mass ejections from heliospheric imagers. In Paper 1 a review of the theoretical framework for the appearance of ICMEs in the heliosphere was presented and in Paper 2 a model was developed that extracted the three-dimensional...

متن کامل

Entropy Generation of Double Diffusive Natural Convection in a Three Dimensional Differentially Heated Enclosure

Entropy generation of double diffusive natural convection in a three dimensional differentially heated enclosure has been performed numerically. Vertical walls of enclosure are heated differentially and remaining walls are adiabatic. The obtained results were presented via iso-concentration, iso-temperatures, velocity vector projection, particle trajectories, velocity profiles, iso-entropy, loc...

متن کامل

A Model for Patchy Reconnection in Three Dimensions

We show, theoretically and via MHD simulations, how a short burst of reconnection localized in three dimensions on a one-dimensional current sheet creates a pair of reconnected flux tubes. We focus on the post-reconnection evolution of these flux tubes, studying their velocities and shapes. We find that slow-mode shocks propagate along these reconnected flux tubes, releasing magnetic energy as ...

متن کامل

A NUMERICAL MODEL OF A CORONAL MASS EJECTION: SHOCK DEVELOPMENT WITH IMPLICATIONS FOR THE ACCELERATION OF GeV PROTONS

The initiation and evolution of the coronal mass ejection, which occurred on 1998 May 2 in NOAA Active Region 8210, are modeled using a fully three-dimensional, global MHD code. The initial magnetic field for the model is based on magnetogram data from the Wilcox Solar Observatory, and the solar eruption is initiated by slowly evolving the boundary conditions until a critical point is reached w...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2008