Generalized Mutual Subspace Based Methods for Image Set Classification
نویسنده
چکیده
The subspace-based methods are effectively applied to classify sets of feature vectors by modeling them as subspaces. It is, however, difficult to appropriately determine the subspace dimensionality in advance for better performance. For alleviating such issue, we present a generalized mutual subspace method by introducing soft weighting across the basis vectors of the subspace. The bases are effectively combined via the soft weights to measure the subspace similarities (angles) without definitely setting the subspace dimensionality. By using the soft weighting, we consequently propose a novel mutual subspace-based method to construct the discriminative space which renders more discriminative subspace similarities. In the experiments on 3D object recognition using image sets, the proposed methods exhibit stably favorable performances compared to the other subspace-based methods.
منابع مشابه
Boosting Constrained Mutual Subspace Method for Robust Image-Set Based Object Recognition
Object recognition using image-set or video sequence as input tends to be more robust since image-set or video sequence provides much more information than single snap-shot about the variability in the appearance of the target subject. Constrained Mutual Subspace Method (CMSM) is one of the state-of-the-art algorithms for imageset based object recognition by first projecting the image-set patte...
متن کاملPlant Classification in Images of Natural Scenes Using Segmentations Fusion
This paper presents a novel approach to automatic classifying and identifying of tree leaves using image segmentation fusion. With the development of mobile devices and remote access, automatic plant identification in images taken in natural scenes has received much attention. Image segmentation plays a key role in most plant identification methods, especially in complex background images. Wher...
متن کاملImage Classification via Sparse Representation and Subspace Alignment
Image representation is a crucial problem in image processing where there exist many low-level representations of image, i.e., SIFT, HOG and so on. But there is a missing link across low-level and high-level semantic representations. In fact, traditional machine learning approaches, e.g., non-negative matrix factorization, sparse representation and principle component analysis are employed to d...
متن کاملA Framework for 3D Object Recognition Using the Kernel Constrained Mutual Subspace Method
This paper introduces the kernel constrained mutual subspace method (KCMSM) and provides a new framework for 3D object recognition by applying it to multiple view images. KCMSM is a kernel method for classifying a set of patterns. An input pattern x is mapped into the high-dimensional feature space F via a nonlinear function φ, and the mapped pattern φ(x) is projected onto the kernel generalize...
متن کاملSIDF: A Novel Framework for Accurate Surgical Instrument Detection in Laparoscopic Video Frames
Background and Objectives: Identification of surgical instruments in laparoscopic video images has several biomedical applications. While several methods have been proposed for accurate detection of surgical instruments, the accuracy of these methods is still challenged high complexity of the laparoscopic video images. This paper introduces a Surgical Instrument Detection Framework (SIDF) for a...
متن کامل