Noncovalent Functionalization and Charge Transfer in Antimonene

نویسندگان

  • Gonzalo Abellán
  • Pablo Ares
  • Stefan Wild
  • Edurne Nuin
  • Christian Neiss
  • David Rodriguez-San Miguel
  • Pilar Segovia
  • Carlos Gibaja
  • Enrique G Michel
  • Andreas Görling
  • Frank Hauke
  • Julio Gómez-Herrero
  • Andreas Hirsch
  • Félix Zamora
چکیده

Antimonene, a novel group 15 two-dimensional material, is functionalized with a tailormade perylene bisimide through strong van der Waals interactions. The functionalization process leads to a significant quenching of the perylene fluorescence, and surpasses that observed for either graphene or black phosphorus, thus allowing straightforward characterization of the flakes by scanning Raman microscopy. Furthermore, scanning photoelectron microscopy studies and theoretical calculations reveal a remarkable charge-transfer behavior, being twice that of black phosphorus. Moreover, the excellent stability under environmental conditions of pristine antimonene has been tackled, thus pointing towards the spontaneous formation of a sub-nanometric oxide passivation layer. DFT calculations revealed that the noncovalent functionalization of antimonene results in a charge-transfer band gap of 1.1 eV.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Charge neutrality and band-gap tuning of epitaxial graphene on SiC by molecular doping

Epitaxial graphene on SiC 0001 suffers from strong intrinsic n-type doping. We demonstrate that the excess negative charge can be fully compensated by noncovalently functionalizing graphene with the strong electronacceptor tetrafluorotetracyanoquinodimethane F4-TCNQ . Charge neutrality can be reached in monolayer graphene as shown in electron-dispersion spectra from angular-resolved photoemissi...

متن کامل

Chemical Strategies for Enhancing Activity and Charge Transfer in Ultrathin Pt Nanowires Immobilized onto Nanotube Supports for the Oxygen Reduction Reaction.

Multiwalled carbon nanotubes (MWNTs) represent a promising support medium for electrocatalysts, especially Pt nanoparticles (NPs). The advantages of using MWNTs include their large surface area, high conductivity, as well as long-term stability. Surface functionalization of MWNTs with various terminal groups, such as -COOH, -SH, and -NH2, allows for rational electronic tuning of catalyst-suppor...

متن کامل

Surface-confined self-assembled Janus tectons: a versatile platform towards the noncovalent functionalization of graphene.

A general strategy for simultaneously generating surface-based supramolecular architectures on flat sp(2) -hybridized carbon supports and independently exposing on demand off-plane functionality with controlled lateral order is highly desirable for the noncovalent functionalization of graphene. Here, we address this issue by providing a versatile molecular platform based on a library of new 3D ...

متن کامل

High mobility graphene ion-sensitive field-effect transistors by noncovalent functionalization.

Noncovalent functionalization is a well-known nondestructive process for property engineering of carbon nanostructures, including carbon nanotubes and graphene. However, it is not clear to what extend the extraordinary electrical properties of these carbon materials can be preserved during the process. Here, we demonstrated that noncovalent functionalization can indeed delivery graphene field-e...

متن کامل

Noncovalent functionalization as an alternative to oxidative acid treatment of single wall carbon nanotubes with applications for polymer composites.

We have created stable dispersions of single wall carbon nanotubes (SWNTs) in water by employing a noncovalent functionalization scheme that allows carboxylic acid moieties to be attached to the SWNT surface by a pi-pi stacking interaction. Pyrenecarboxylic acid (PCA) is noncovalently attached to the surface of SWNTs and affords highly uniform and stable aqueous dispersions. This method was dev...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 56  شماره 

صفحات  -

تاریخ انتشار 2017