Recombination-associated sequence homogenization of neighboring Alu elements: signature of nonallelic gene conversion.
نویسندگان
چکیده
Recently, researchers have begun to recognize that, in order to establish neutral models for disease association and evolutionary genomics studies, it is crucial to have a clear understanding of the genomic impact of nonallelic gene conversion. Drawing on previous successes in characterizing this phenomenon over protein-coding gene families, we undertook a computational analysis of neighboring Alu sequences in the genome scale. For this purpose, we developed adjusted comutation rate (aCMR), a novel statistical method measuring the excess number of identical point mutations shared by adjacent Alu sequences, vis-à-vis random pairs. Using aCMR, we uncovered a remarkable genome-wide sequence homogenization of neighboring Alus, with the strongest signal observed in the pseudoautosomal regions of the X and Y chromosomes. The magnitude of sequence homogenization between Alu pairs is greater with shorter interlocus distance, higher sequence identity, and parallel orientation. Moreover, shared substitutions show a strong directionality toward GC nucleotides, with multiple substitutions tending to cluster within the Alu sequence. Taken together, these observed recombination-associated sequence homogenization patterns are best explained by frequent ubiquitous gene conversion events between neighboring Alus. We believe that these observations help to illuminate the nature and impact of the enigmatic phenomenon of gene conversion.
منابع مشابه
An Alu transposition model for the origin and expansion of human segmental duplications.
Relative to genomes of other sequenced organisms, the human genome appears particularly enriched for large, highly homologous segmental duplications (> or =90% sequence identity and > or =10 kbp in length). The molecular basis for this enrichment is unknown. We sought to gain insight into the mechanism of origin, by systematically examining sequence features at the junctions of duplications. We...
متن کاملThe Contribution of Alu Elements to Mutagenic DNA Double-Strand Break Repair
Alu elements make up the largest family of human mobile elements, numbering 1.1 million copies and comprising 11% of the human genome. As a consequence of evolution and genetic drift, Alu elements of various sequence divergence exist throughout the human genome. Alu/Alu recombination has been shown to cause approximately 0.5% of new human genetic diseases and contribute to extensive genomic str...
متن کاملRecently integrated Alu elements and human genomic diversity.
A comprehensive analysis of two Alu Y lineage subfamilies was undertaken to assess Alu-associated genomic diversity and identify new Alu insertion polymorphisms for the study of human population genetics. Recently integrated Alu elements (283) from the Yg6 and Yi6 subfamilies were analyzed by polymerase chain reaction (PCR), and 25 of the loci analyzed were polymorphic for insertion presence/ab...
متن کاملPotential gene conversion and source genes for recently integrated Alu elements.
Alu elements comprise >10% of the human genome. We have used a computational biology approach to analyze the human genomic DNA sequence databases to determine the impact of gene conversion on the sequence diversity of recently integrated Alu elements and to identify Alu elements that were potentially retroposition competent. We analyzed 269 Alu Ya5 elements and identified 23 members of a new Al...
متن کاملStructural Variation of Alu Element and Human Disease
Transposable elements are one of major sources to cause genomic instability through various mechanisms including de novo insertion, insertion-mediated genomic deletion, and recombination-associated genomic deletion. Among them is Alu element which is the most abundant element, composing ~10% of the human genome. The element emerged in the primate genome 65 million years ago and has since propag...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Molecular biology and evolution
دوره 27 10 شماره
صفحات -
تاریخ انتشار 2010