Liraglutide, a long-acting GLP-1 mimetic, and its metabolite attenuate inflammation after intracerebral hemorrhage.
نویسندگان
چکیده
The inflammatory response plays a pivotal role in propagating injury of intracerebral hemorrhage (ICH). Glucagon-like-peptide-1 (GLP-1) is a hormone with antidiabetic effect and may also have antiinflammatory properties. Despite consensus that the glucoregulatory action is mediated by the GLP-1 receptor (GLP-1R), mechanisms in the brain remain unclear. We investigated the effect of a long-acting GLP-1 analog, liraglutide, and its truncated metabolite, GLP-1(9-36)a from dipeptidyl peptidase-4 (DPP-4) cleavage in ICH-induced brain injury. Primary outcomes were cerebral edema formation, neurobehavior, and inflammatory parameters. GLP-1(9-36)a, GLP-1R inhibitor, adenosine monophosphate-activated protein kinase (AMPK) phosphorylation inhibitor and DPP-4 inhibitor were administered to examine the mechanisms of action. Liraglutide suppressed neuroinflammation, prevented brain edema and neurologic deficit following ICH, which were partially reversed by GLP-1R inhibitor and AMPK phosphorylation inhibitor. Liraglutide-mediated AMPK phosphorylation was unaffected by GLP-1R inhibitor, and was found to be induced by GLP-1(9-36)a. GLP-1(9-36)a showed salutary effects on primary outcomes that were reversed by AMPK phosphorylation inhibitor but not by GLP-1R inhibitor. Liraglutide and DPP-4 inhibitor co-administration reversed liraglutide-mediated AMPK phosphorylation and antiinflammatory effects. Liraglutide exerted duals actions and the antiinflammatory effects are partially mediated by its metabolite in a phosphorylated AMPK-dependent manner. Therapies that inhibit GLP-1 degradation may weaken the metabolite-mediated effects.
منابع مشابه
Glucagon-Like Peptide-1 (GLP-1) Analog Liraglutide Inhibits Endothelial Cell Inflammation through a Calcium and AMPK Dependent Mechanism
Liraglutide is a glucagon-like peptide-1 (GLP-1) mimetic used for the treatment of Type 2 diabetes. Similar to the actions of endogenous GLP-1, liraglutide potentiates the post-prandial release of insulin, inhibits glucagon release and increases satiety. Recent epidemiological studies and clinical trials have suggested that treatment with GLP-1 mimetics may also diminish the risk of cardiovascu...
متن کاملLiraglutide in the treatment of type 2 diabetes mellitus: clinical utility and patient perspectives
Type 2 diabetes mellitus (T2DM) is a progressive disease associated with significant morbidity and mortality. There is good evidence that intensive glycemic control reduces the development and progression of complications in patients with diabetes. In order to achieve glycemic targets, patients often require a combination of oral therapy and/or insulin in addition to lifestyle modification. Unf...
متن کاملNew Drug Class
Glucagon-like peptide 1 (GLP-1) is a gut-derived incretin hormone that stimulates insulin and suppresses glucagon secretion, inhibits gastric emptying, and reduces appetite and food intake. Therapeutic approaches for enhancing incretin action include degradation-resistant GLP-1 receptor agonists (incretin mimetics), and inhibitors of dipeptidyl peptidase-4 (DPP-4) activity (incretin enhancers)....
متن کاملGLP-1 agonism stimulates brown adipose tissue thermogenesis and browning through hypothalamic AMPK.
GLP-1 receptor (GLP-1R) is widely located throughout the brain, but the precise molecular mechanisms mediating the actions of GLP-1 and its long-acting analogs on adipose tissue as well as the brain areas responsible for these interactions remain largely unknown. We found that central injection of a clinically used GLP-1R agonist, liraglutide, in mice stimulates brown adipose tissue (BAT) therm...
متن کاملEffects of the long-acting human glucagon-like peptide-1 analog liraglutide on beta-cell function in normal living conditions.
L iraglutide is a long-acting glucagonlike peptide (GLP)-1 analog, which exerts its glucose-lowering action through multiple mechanisms (1). One important feature of liraglutide is its ability to enhance -cell function. The effects on -cell function have been demonstrated using standardized -cell function tests based on intravenous glucose administration (2–4). However, these studies may not re...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Journal of cerebral blood flow and metabolism : official journal of the International Society of Cerebral Blood Flow and Metabolism
دوره 32 12 شماره
صفحات -
تاریخ انتشار 2012