Two-state model for helicase translocation and unwinding of nucleic acids.
نویسندگان
چکیده
Helicases are molecular motors that unwind double-stranded nucleic acids (dsNA), such as DNA and RNA. Typically a helicase translocates along one of the NA single strands while unwinding and uses adenosine triphosphate (ATP) hydrolysis as an energy source. Here we model a helicase motor that can switch between two states, which could represent two different points in the ATP hydrolysis cycle. Our model is an extension of the earlier Betterton-Jülicher model of helicases to incorporate switching between two states. The main predictions of the model are the speed of unwinding of the dsNA and fluctuations around the average unwinding velocity. Motivated by a recent claim that the NS3 helicase of Hepatitis C virus follows a flashing-ratchet mechanism, we have compared the experimental results for the NS3 helicase with a special limit of our model which corresponds to the flashing-ratchet scenario. Our model accounts for one key feature of the experimental data on NS3 helicase. However, contradictory observations in experiments carried out under different conditions limit the ability to compare the model to experiments.
منابع مشابه
Velocity and processivity of helicase unwinding of double-stranded nucleic acids.
Helicases are molecular motors which unwind double-stranded nucleic acids (dsNA) in cells. Many helicases move with directional bias on single-stranded (ss) nucleic acids, and couple their directional translocation to strand separation. A model of the coupling between translocation and unwinding uses an interaction potential to represent passive and active helicase mechanisms. A passive helicas...
متن کاملCoupling translocation with nucleic acid unwinding by NS3 helicase.
We present a semiquantitative model for translocation and unwinding activities of monomeric nonstructural protein 3 (NS3) helicase. The model is based on structural, biochemical, and single-molecule measurements. The model predicts that the NS3 helicase actively unwinds duplex by reducing more than 50% the free energy that stabilizes base pairing/stacking. The unwinding activity slows the movem...
متن کاملTranslocation of Saccharomyces cerevisiae Pif1 helicase monomers on single-stranded DNA
In Saccharomyces cerevisiae Pif1 participates in a wide variety of DNA metabolic pathways both in the nucleus and in mitochondria. The ability of Pif1 to hydrolyse ATP and catalyse unwinding of duplex nucleic acid is proposed to be at the core of its functions. We recently showed that upon binding to DNA Pif1 dimerizes and we proposed that a dimer of Pif1 might be the species poised to catalyse...
متن کاملThe DNA-unwinding mechanism of the ring helicase of bacteriophage T7.
Helicases are motor proteins that use the chemical energy of NTP hydrolysis to drive mechanical processes such as translocation and nucleic acid strand separation. Bacteriophage T7 helicase functions as a hexameric ring to drive the replication complex by separating the DNA strands during genome replication. Our studies show that T7 helicase unwinds DNA with a low processivity, and the results ...
متن کاملInhibition of RNA Helicases of ssRNA+ Virus Belonging to Flaviviridae, Coronaviridae and Picornaviridae Families
Many viral pathogens encode the motor proteins named RNA helicases which display various functions in genome replication. General strategies to design specific and selective drugs targeting helicase for the treatment of viral infections could act via one or more of the following mechanisms: inhibition of the NTPase activity, by interferences with ATP binding and therefore by limiting the energy...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Physical review. E, Statistical, nonlinear, and soft matter physics
دوره 77 6 Pt 1 شماره
صفحات -
تاریخ انتشار 2008