Notes on Automorphic Functions: An Entire Autol!lorphic Form of Positive Dimension is Zero*
نویسنده
چکیده
L It is a result familiar in the theory of automorphic form s that an entire automorphic form of positive dimension on an H-group is identically zero (see sec. 2 for the definitions). This follows immediately , for exa mple, from the well-known exac t formula for the Fourier coefficie nts of automorphic forms of positive dimension ([1], p. 314).1 Another proof is by means of a formula for the numbe r of zeros minus the number of poles of an automorphic form in a fundamental domain. This formula (obtained by contour integration around the fundamental domain) shows that whe n the dime nsion of the form is positive, thi s difference is negative, and he nce such a form mu st have poles. In section 3 of thi s note we give what appears to be a new proof of this result by using the method Hecke e mployed to estimate the Fourier coeffi cients of cusp forms of negative dimension ([1] , p. 281). I This proof is simpler and more direc t than the proofs mentioned above. In sections 45 we give two variations of this method. The me thod of section 5 is applicable to a larger class of groups than the H-groups , and in particular applies to compact groups and groups conjugate to H-groups. 2. A group r of real linear fractional transformations acting on :J't', the upper half-plane 1m 7 > 0, is an H-group provided (i) r is discontinuous on :J't', but is not di scontinuous at any point of the real line, (ii) r is finitely generated, and (ii i) r contains translations. With each transformation v~r we associate a real
منابع مشابه
Toroidal Automorphic Forms for Some Function Fields
Zagier introduced toroidal automorphic forms to study the zeros of zeta functions: an automorphic form on GL2 is toroidal if all its right translates integrate to zero over all nonsplit tori in GL2, and an Eisenstein series is toroidal if its weight is a zero of the zeta function of the corresponding field. We compute the space of such forms for the global function fields of class number one an...
متن کاملComplex Vector Bundles and Jacobi Forms
The elliptic genus (EG) of a compact complex manifold was introduced as a holomorphic Euler characteristic of some formal power series with vector bundle coefficients. EG is an automorphic form in two variables only if the manifold is a Calabi–Yau manifold. In physics such a function appears as the partition function of N = 2 superconformal field theories. In these notes we define the modified ...
متن کاملOn tensor product $L$-functions and Langlands functoriality
In the spirit of the Langlands proposal on Beyond Endoscopy we discuss the explicit relation between the Langlands functorial transfers and automorphic $L$-functions. It is well-known that the poles of the $L$-functions have deep impact to the Langlands functoriality. Our discussion also includes the meaning of the central value of the tensor product $L$-functions in terms of the Langl...
متن کاملHYPERTRANSCENDENTAL FORMAL POWER SERIES OVER FIELDS OF POSITIVE CHARACTERISTIC
Let $K$ be a field of characteristic$p>0$, $K[[x]]$, the ring of formal power series over $ K$,$K((x))$, the quotient field of $ K[[x]]$, and $ K(x)$ the fieldof rational functions over $K$. We shall give somecharacterizations of an algebraic function $fin K((x))$ over $K$.Let $L$ be a field of characteristic zero. The power series $finL[[x]]$ is called differentially algebraic, if it satisfies...
متن کاملPoles of Artin L - functions and the strong Artin
We show that if the L-function of an irreducible 2-dimensional complex Galois representation over Q is not automorphic then it has infinitely many poles. In particular, the Artin conjecture for a single representation implies the corresponding strong Artin conjecture. Introduction Let ρ : Gal(Q/Q) → GLn(C) be an irreducible continuous representation of the absolute Galois group of Q. Brauer [2]...
متن کامل