Differentiable Learning of Logical Rules for Knowledge Base Reasoning

نویسندگان

  • Fan Yang
  • Zhilin Yang
  • William W. Cohen
چکیده

We study the problem of learning probabilistic first-order logical rules for knowledge base reasoning. This learning problem is difficult because it requires learning the parameters in a continuous space as well as the structure in a discrete space. We propose a framework, Neural Logic Programming, that combines the parameter and structure learning of first-order logical rules in an end-to-end differentiable model. This approach is inspired by a recently-developed differentiable logic called TensorLog [5], where inference tasks can be compiled into sequences of differentiable operations. We design a neural controller system that learns to compose these operations. Empirically, our method outperforms prior work on multiple knowledge base benchmark datasets, including Freebase and WikiMovies.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Differentiable Learning of Logical Rules for Knowledge Base Completion

We study the problem of learning probabilistic first-order logical rules for knowledge base reasoning. This learning problem is difficult because it requires learning the parameters in a continuous space as well as the structure in a discrete space. We propose a framework, Neural Logic Programming, that combines the parameter and structure learning of first-order logical rules in an end-to-end ...

متن کامل

Extending the Qualitative Trajectory Calculus Based on the Concept of Accessibility of Moving Objects in the Paths

Qualitative spatial representation and reasoning are among the important capabilities in intelligent geospatial information system development. Although a large contribution to the study of moving objects has been attributed to the quantitative use and analysis of data, such calculations are ineffective when there is little inaccurate data on position and geometry or when explicitly explaining ...

متن کامل

Learning Knowledge Base Inference with Neural Theorem Provers

In this paper we present a proof-of-concept implementation of Neural Theorem Provers (NTPs), end-to-end differentiable counterparts of discrete theorem provers that perform first-order inference on vector representations of symbols using function-free, possibly parameterized, rules. As such, NTPs follow a long tradition of neural-symbolic approaches to automated knowledge base inference, but di...

متن کامل

A Framework for Learning and Inference in Network Management

This paper presents a network management framework which builds the management information infrastructure and equips the management applications with learning and reasoning abilities for automatic and adaptive management tasks. Views are global virtual management information constructed via logical rules from the distributed physical management information. Through these views, management appli...

متن کامل

TensorLog: Deep Learning Meets Probabilistic DBs

We present an implementation of a probabilistic first-order logic called TensorLog, in which classes of logical queries are compiled into differentiable functions in a neuralnetwork infrastructure such as Tensorflow or Theano. This leads to a close integration of probabilistic logical reasoning with deep-learning infrastructure: in particular, it enables high-performance deep learning framework...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2017