Cytochromes P450 in the bioactivation of chemicals.

نویسندگان

  • Costas Ioannides
  • David F V Lewis
چکیده

The initial view that the cytochrome P450 enzyme system functions simply in the deactivation of xenobiotics is anachronistic on the face of mounting evidence that this system can also transform many innocuous chemicals to toxic products. However, not all xenobiotic-metabolising cytochrome P450 subfamilies show the same propensity in the bioactivation of chemicals. For example, the CYP2C, 2B and 2D subfamilies play virtually no role in the bioactivation of toxic and carcinogenic chemicals, whereas the CYP1A, 1B and 2E subfamilies are responsible for the bioactivation of the majority of xenobiotics. Electronic and molecular structural features of organic chemicals appear to predispose them to either bioactivation by one cytochrome P450 enzyme or deactivation by another. Consequently, the fate of a chemical in the body is largely dependent on the cytochrome P450 profile at the time of exposure. Any factor that modulates the enzymes involved in the metabolism of a certain chemical will also influence its toxicity and carcinogenicity. For example, many chemical carcinogens bioactivated by CYP1, on repeated administration, selectively induce this family, thus exacerbating their carcinogenicity. CYP1 induction potency by chemicals appears to be determined by a combination of their molecular shape and electron activation. The function of cytochromes P450 in the bioactivation of chemicals is currently being exploited to design systems that can be used clinically to facilitate the metabolic conversion of prodrugs to their biologically-active metabolites in cells that poorly express them, such as tumour cells, in the so-called gene-directed prodrug therapy.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Bioactivation of flutamide metabolites by human liver microsomes.

Flutamide, a widely used nonsteroidal antiandrogen drug for the treatment of prostate cancer, has been associated with rare incidences of hepatotoxicity in patients. It is believed that bioactivation of flutamide and subsequent covalent binding to cellular proteins is responsible for its toxicity. A novel N-S glutathione adduct has been identified in a previous bioactivation study of flutamide ...

متن کامل

Biotransformation of 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone (NNK) in peripheral human lung microsomes.

The contributions of different enzymes to 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone (NNK) biotransformation were assessed in human lung microsomes prepared from peripheral lung specimens obtained from seven subjects. Metabolite formation was expressed as a percentage of total recovered radioactivity from [5-3H]NNK and its metabolites per milligram of protein per minute. 4-(Methylnitrosamin...

متن کامل

The pneumotoxin 3-methylindole is a substrate and a mechanism-based inactivator of CYP2A13, a human cytochrome P450 enzyme preferentially expressed in the respiratory tract.

3-Methylindole (3MI), a respiratory tract toxicant, can be metabolized by a number of cytochromes P450 (P450), primarily through either dehydrogenation or epoxidation of the indole. In the present study, we assessed the bioactivation of 3MI by recombinant CYP2A13, a human P450 predominantly expressed in the respiratory tract. Four metabolites were detected, and the two principal ones were ident...

متن کامل

Pathways of carbamazepine bioactivation in vitro: II. The role of human cytochrome P450 enzymes in the formation of 2-hydroxyiminostilbene.

Conversion of the carbamazepine metabolite, 2-hydroxycarbamazepine, to the potentially reactive species, carbamazepine iminoquinone (CBZ-IQ), has been proposed as a possible bioactivation pathway in the pathogenesis of carbamazepine-induced hypersensitivity. Generation of CBZ-IQ has been proposed to proceed through the intermediate, 2-hydroxyiminostilbene (2-OHIS); however, data suggested that ...

متن کامل

Cytochrome p450 and chemical toxicology.

The field of cytochrome P450 (P450) research has developed considerably over the past 20 years, and many important papers on the roles of P450s in chemical toxicology have appeared in Chemical Research in Toxicology. Today, our basic understanding of many of the human P450s is relatively well-established, in terms of the details of the individual genes, sequences, and basic catalytic mechanisms...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Current topics in medicinal chemistry

دوره 4 16  شماره 

صفحات  -

تاریخ انتشار 2004