A Multi-scale Feature Likelihood Map for Direct Evaluation of Object Hypotheses

نویسندگان

  • Ivan Laptev
  • Tony Lindeberg
چکیده

This paper develops and investigates a new approach for evaluating feature based object hypotheses in a direct way. The idea is to compute a feature likelihood map (FLM), which is a function normalized to the interval [0, 1], and which approximates the likelihood of image features at all points in scale-space. In our case, the FLM is defined from Gaussian derivative operators and in such a way that it assumes its strongest responses near the centers of symmetric blob-like or elongated ridge-like structures and at scales that reflect the size of these structures in the image domain. While the FLM inherits several advantages of feature based image representations, it also (i) avoids the need for explicit search when matching features in object models to image data, and (ii) eliminates the need for thresholds present in most traditional feature based approaches. In an application presented in this paper, the FLM is applied to simultaneous tracking and recognition of hand models based on particle filtering. The experiments demonstrate the feasibility of the approach, and that real time performance can be obtained by a pyramid implementation of the proposed concept.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Comparing pixel-based and object-based algorithms for classifying land use of arid basins (Case study: Mokhtaran Basin, Iran)

In this research, two techniques of pixel-based and object-based image analysis were investigated and compared for providing land use map in arid basin of Mokhtaran, Birjand. Using Landsat satellite imagery in 2015, the classification of land use was performed with three object-based algorithms of supervised fuzzy-maximum likelihood, maximum likelihood, and K-nearest neighbor. Nine combinations...

متن کامل

Developing a New Method in Object Based Classification to Updating Large Scale Maps with Emphasis on Building Feature

According to the cities expansion, updating urban maps for urban planning is important and its effectiveness is depend on the information extraction / change detection accuracy. Information extraction methods are divided into two groups, including Pixel-Based (PB) and Object-Based (OB). OB analysis has overcome the limitations of PB analysis (producing salt-pepper results and features with hole...

متن کامل

ADAPTIVE SCALE ROBUST FEATURE DENSITY APPROXIMATION FOR VISUAL OBJECT REPRESENTATION AND TRACKING Preparation of Camera-Ready Contributions to INSTICC Proceedings

Feature density approximation (FDA) based visual object appearance representation is emerging as an effective method for object tracking, but its challenges come from object’s complex motion (e.g. scaling, rotation) and the consequent object’s appearance variation. The traditional adaptive FDA methods extract features in fixed scales ignoring the object’s scale variation, and update FDA by sequ...

متن کامل

Automatic Interpretation of UltraCam Imagery by Combination of Support Vector Machine and Knowledge-based Systems

With the development of digital sensors, an increasing number of high-resolution images are available. Interpretation of these images is not possible manually, which necessitates seeking for practical, fast and automatic solutions to solve the environmental and location-based management problems. The land cover classification using high-resolution imagery is a difficult process because of the c...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2001