Credit Scoring Models Using Soft Computing Methods: A Survey
نویسندگان
چکیده
During the last fifteen years, soft computing methods have been successfully applied in building powerful and flexible credit scoring models and have been suggested to be a possible alternative to statistical methods. In this survey, the main soft computing methods applied in credit scoring models are presented and the advantages as well as the limitations of each method are outlined. The main modelling issues are discussed especially from the data mining point of view. The study concludes with a series of suggestions of other methods to be investigated for credit scoring modelling.
منابع مشابه
A Comparison of Different Soft Computing Models for Credit Scoring
It has become crucial over the years for nations to improve their credit scoring methods and techniques in light of the increasing volatility of the global economy. Statistical methods or tools have been the favoured means for this; however artificial intelligence or soft computing based techniques are becoming increasingly preferred due to their proficient and precise nature and relative simpl...
متن کاملInvestigating the missing data effect on credit scoring rule based models: The case of an Iranian bank
Credit risk management is a process in which banks estimate probability of default (PD) for each loan applicant. Data sets of previous loan applicants are built by gathering their data, and these internal data sets are usually completed using external credit bureau’s data and finally used for estimating PD in banks. There is also a continuous interest for bank to use rule based classifiers to b...
متن کاملارائه یک مدل طبقهبندی ترکیبی هوشمند مبتنی بر شبکههای عصبی پرسپترون چندلایه و رگرسیون فازی بهمنظور تجزیه و تحلیل مسائل امتیازدهی اعتباری
Financial crises in banking systems are due to inability to manage credit risks. Credit scoring is one of the risk management techniques that analyze the borrower's risk. In this paper, using the advantages of computational intelligence as well as soft computing methods, a new hybrid approach is proposed in order to improve credit risk management. In the proposed method, for modeling in uncerta...
متن کاملImproved Automatic Clustering Using a Multi-Objective Evolutionary Algorithm With New Validity measure and application to Credit Scoring
In data mining, clustering is one of the important issues for separation and classification with groups like unsupervised data. In this paper, an attempt has been made to improve and optimize the application of clustering heuristic methods such as Genetic, PSO algorithm, Artificial bee colony algorithm, Harmony Search algorithm and Differential Evolution on the unlabeled data of an Iranian bank...
متن کاملHow Good Is „Good“ ? - Making Better Use of Subjective Information in Bank Internal Credit Scoring Systems
Lenders experience positive net revenue impacts from lending if they increase the classification power of their credit scoring systems. If loan officers’ subjective assessments of otherwise intangible borrower characteristics contain additional information about a borrower, a lender may improve the default forecast quality of his internal credit scoring systems by utilizing this subjective info...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Int. Arab J. Inf. Technol.
دوره 7 شماره
صفحات -
تاریخ انتشار 2010