Infeasible Elitists and Stochastic Ranking Selection in Constrained Evolutionary Multi-objective Optimization
نویسندگان
چکیده
To handle the constrained multi-objective evolutionary optimization problems, the authors firstly analyze Deb’s constrained-domination principle (DCDP) and point out that it more likely stick into local optimum on these problems with two or more disconnected feasible regions. Secondly, to handle constraints in multi-objective optimization problems (MOPs), a new constraint handling strategy is proposed, which keeps infeasible elitists to act as bridges connecting disconnected feasible regions besides feasible ones during optimization and adopts stochastic ranking to balance objectives and constraints in each generation. Finally, this strategy is applied to NSGA-II, and then is compared with DCDP on six benchmark constrained MOPs. Our results demonstrate that distribution and stability of the solutions are distinctly improved on the problems with two or more disconnected feasible regions, such as CTP6.
منابع مشابه
Stochastic ranking for constrained evolutionary optimization
Penalty functions are often used in constrained optimization. However, it is very difficult to strike the right balance between objective and penalty functions. This paper introduces a novel approach to balance objective and penalty functions stochastically, i.e., stochastic ranking, and presents a new view on penalty function methods in terms of the dominance of penalty and objective functions...
متن کاملA hybrid Particle Swarm Evolutionary Algorithm for Constrained Multi-Objective Optimization
In this paper, a hybrid particle swarm evolutionary algorithm is proposed for solving constrained multi-objective optimization. Firstly, in order to keep some particles with smaller constraint violations, a threshold value is designed, the updating strategy of particles is revised based on the threshold value; then in order to keep some particles with smaller rank values, an infeasible elitist ...
متن کاملGrouping-based Evolutionary Algorithm Improves the Performance of Dynamic Penalty Method for Constrained Optimization Problems
Infeasible individuals are often underrated when evolutionary algorithms are used for solving constraint optimization problems. This paper proposes a new approach to balance the feasible and infeasible individuals. The population is divided into two groups: feasible group and infeasible group. The evaluation and ranking of these two groups are performed separately. Parents for reproduction are ...
متن کاملUsing Genetic Algorithm in Solving Stochastic Programming for Multi-Objective Portfolio Selection in Tehran Stock Exchange
Investor decision making has always been affected by two factors: risk and returns. Considering risk, the investor expects an acceptable return on the investment decision horizon. Accordingly, defining goals and constraints for each investor can have unique prioritization. This paper develops several approaches to multi criteria portfolio optimization. The maximization of stock returns, the pow...
متن کاملA multi-objective resource-constrained optimization of time-cost trade-off problems in scheduling project
This paper presents a multi-objective resource-constrained project scheduling problem with positive and negative cash flows. The net present value (NPV) maximization and making span minimization are this study objectives. And since this problem is considered as complex optimization in NP-Hard context, we present a mathematical model for the given problem and solve three evolutionary algorithms;...
متن کامل