N-fold integer programming in cubic time
نویسندگان
چکیده
n-Fold integer programming is a fundamental problem with a variety of natural applications in operations research and statistics. Moreover, it is universal and provides a new, variable-dimension, parametrization of all of integer programming. The fastest algorithm for n-fold integer programming predating the present article runs in time O ( ng(A)L ) with L the binary length of the numerical part of the input and g(A) the so-called Graver complexity of the bimatrix A defining the system. In this article we provide a drastic improvement and establish an algorithm which runs in time O ( n3L ) having cubic dependency on n regardless of the bimatrix A. Our algorithm works for separable convex piecewise affine objectives as well. Moreover, it can be used to define a hierarchy of approximations for any integer programming problem. Mathematics Subject Classification (2000) 52B ·52C ·62H ·68Q ·68R ·90B ·90C
منابع مشابه
Theory and Applications of N-Fold Integer Programming
We overview our recently introduced theory of n-fold integer programming which enables the polynomial time solution of fundamental linear and nonlinear integer programming problems in variable dimension. We demonstrate its power by obtaining the first polynomial time algorithms in several application areas including multicommodity flows and privacy in statistical databases.
متن کاملA fuzzy mixed-integer goal programming model for a parallel machine scheduling problem with sequence-dependent setup times and release dates
This paper presents a new mixed-integer goal programming (MIGP) model for a parallel machine scheduling problem with sequence-dependent setup times and release dates. Two objectives are considered in the model to minimize the total weighted flow time and the total weighted tardiness simultaneously. Due to the com-plexity of the above model and uncertainty involved in real-world scheduling probl...
متن کاملComparing Mixed-Integer and Constraint Programming for the No-Wait Flow Shop Problem with Due Date Constraints
The impetus for this research was examining a flow shop problem in which tasks were expected to be successively carried out with no time interval (i.e., no wait time) between them. For this reason, they should be completed by specific dates or deadlines. In this regard, the efficiency of the models was evaluated based on makespan. To solve the NP-Hard problem, we developed two mathematical mode...
متن کاملN-Fold Integer Programming
In this article we study a broad class of integer programming problems in variable dimension. We show that these so-termed n-fold integer programming problems are polynomial time solvable. Our proof involves two heavy ingredients discovered recently: the equivalence of linear optimization and so-called directed augmentation, and the stabilization of certain Graver bases. We discuss several appl...
متن کاملHuge Unimodular N-Fold Programs
Optimization over l ×m× n integer 3-way tables with given line-sums is NP-hard already for fixed l = 3, but is polynomial time solvable with both l,m fixed. In the huge version of the problem, the variable dimension n is encoded in binary, with t layer types. It was recently shown that the huge problem can be solved in polynomial time for fixed t, and the complexity of the problem for variable ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Math. Program.
دوره 137 شماره
صفحات -
تاریخ انتشار 2013