0 : Guest Lecture by Venkat Guruswami : Euclidean Subspaces and Compressed Sensing

نویسندگان

  • Sanjeev Arora
  • Moritz Hardt
چکیده

where the second inequality follows from Cauchy-Schwartz. Furthermore, the CauchySchwartz inequality holds with equality for all vectors x in the one-dimensional subspace spanned by the all-ones vector. Therefore, it is not difficult to achieve Property 1 when the subspace X has small dimension. But we want the dimension to be very large, let us say, dim(X) = Ω(N). As it turns out, even with this additional requirement, such subspaces exist. In fact, in a certain sense most subspaces of dimension, say, N/2 satisfy the desired property.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Almost Euclidean subspaces of ℓ1N via expander codes

We give an explicit (in particular, deterministic polynomial time) construction of subspaces X ⊆ RN of dimension (1− o(1))N such that for every x ∈ X, (logN)−O(log log logN) √ N ‖x‖2 6 ‖x‖1 6 √ N ‖x‖2. If we are allowed to use N1/ log logN 6 No(1) random bits and dim(X) > (1 − η)N for any fixed constant η, the lower bound can be further improved to (logN)−O(1) √ N‖x‖2. Through known connections...

متن کامل

Euclidean Sections of with Sublinear Randomness and Error-Correction over the Reals

It is well-known that R has subspaces of dimension proportional to N on which the `1 and `2 norms are uniformly equivalent, but it is unknown how to construct them explicitly. We show that, for any δ > 0, such a subspace can be generated using only N random bits. This improves over previous constructions of Artstein-Avidan and Milman, and of Lovett and Sodin, which require O(N log N), and O(N) ...

متن کامل

Euclidean sections of `1 with sublinear randomness and error-correction over the reals

It is well-known that R has subspaces of dimension proportional to N on which the `1 and `2 norms are uniformly equivalent, but it is unknown how to construct them explicitly. We show that, for any δ > 0, such a subspace can be generated using only N δ random bits. This improves over previous constructions of Artstein-Avidan and Milman, and of Lovett and Sodin, which require O(N log N), and O(N...

متن کامل

Almost Euclidean subspaces of ` N 1 via expander codes ∗

We give an explicit (in particular, deterministic polynomial time) construction of subspaces X ⊆ RN of dimension (1− o(1))N such that for every x ∈ X, (log N)−O(log log log N) √ N ‖x‖2 6 ‖x‖1 6 √ N ‖x‖2. If we are allowed to use N1/ log log N 6 No(1) random bits and dim(X) > (1 − η)N for any fixed constant η, the lower bound can be further improved to (log N)−O(1) √ N‖x‖2. Through known connect...

متن کامل

Almost Euclidean subspaces of lN1 via expander codes

We give an explicit (in particular, deterministic polynomial time) construction of subspaces X ⊆ RN of dimension (1− o(1))N such that for every x ∈ X, (logN)−O(log log logN) √ N ‖x‖2 6 ‖x‖1 6 √ N ‖x‖2. If we are allowed to use N1/ log logN 6 No(1) random bits and dim(X) > (1 − η)N for any fixed constant η, the lower bound can be further improved to (logN)−O(1) √ N‖x‖2. Through known connections...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2008