Editorial: LuxR Solos are Becoming Major Players in Cell–Cell Communication in Bacteria
نویسندگان
چکیده
Quorum sensing (QS) is the ability of microbes to sense and respond to their own population density, which typically results in cooperative activity (Fuqua et al., 1994). This form of microbial communication is important to agriculture and human health as they often participate in the regulation of genes important for host interactions. The classic example of QS in bacteria is performed by the symbiotic bioluminescent bacterium Vibrio fischeri (Hastings and Greenberg, 1999). This bacterium colonizes the light organ of a squid and becomes luminescent at high population density. A pheromone of the acylhomoserine lactone class (AHL) is synthesized by the enzyme LuxI, and is a proxy for population density. The AHL is sensed by the transcription factor LuxR, which then activates the transcription of the luxICDABEG luciferase operon. Homologous LuxR-LuxI pairs have been found throughout the Proteobacteria (Fuqua et al., 2001); there is divergence among the structures of AHLs produced and detected by LuxI-LuxR pairs, providing some species specificity to the systems. Several studies and the sequencing of many bacterial genomes has evidenced the presence of many AHL/QS-related luxR-type genes, which are unpaired to a cognate luxI. These LuxRs possess the typical modular structure having an AHL-binding domain and a DNA-binding HTH domain. These upaired luxRs/LuxRs have been called orphans (Fuqua, 2006; Patankar and Gonzalez, 2009) and more recently solos (Subramoni and Venturi, 2009). Several questions arise on the role of LuxR solos in bacteria and recent studies have revealed a number of roles including eavesdropping, intra-species and inter-kingdom signaling. This research topic of Frontiers in Cellular and Infection Microbiology is a collection of 10 articles which highlight these different roles as well as the widespread distribution of LuxR solos. Three articles highlight how widespread LuxR solos are and provide data on their phylogenetic distribution (Gan et al., 2014; Hudaiberdiev et al., 2015; Subramoni et al., 2015). These surveys have shown the presence of one or multiple predicted LuxR solos in many proteobacterial genomes living in different environments, some of them also harboring genes for one or more complete AHL-QS circuits. LuxR solos can be tentatively clustered into meaningful groups or putative orthologs. These LuxR solos subfamilies could respond to different signals and/or having different roles. The functions of solos can thus far be subdivided in four categories; as detecting endogenous or exogenous signals, of either the classical AHL type, or of a novel type. The AHL-responsive solos can firstly …
منابع مشابه
LuxR solos in Photorhabdus species
Bacteria communicate via small diffusible molecules to mediate group-coordinated behavior, a process designated as quorum sensing. The basic molecular quorum sensing system of Gram-negative bacteria consists of a LuxI-type autoinducer synthase producing acyl-homoserine lactones (AHLs) as signaling molecules, and a LuxR-type receptor detecting the AHLs to control expression of specific genes. Ho...
متن کاملComputational Exploration of Putative LuxR Solos in Archaea and Their Functional Implications in Quorum Sensing
LuxR solos are unexplored in Archaea, despite their vital role in the bacterial regulatory network. They assist bacteria in perceiving acyl homoserine lactones (AHLs) and/or non-AHLs signaling molecules for establishing intraspecies, interspecies, and interkingdom communication. In this study, we explored the potential LuxR solos of Archaea from InterPro v62.0 meta-database employing taxonomic,...
متن کاملBacterial LuxR solos have evolved to respond to different molecules including signals from plants
A future challenge will be understanding the extensive communication that most likely takes place in bacterial interspecies and interkingdom signaling between plants and bacteria. A major bacterial inter-cellular signaling system in Gram-negative bacteria is LuxI/R quorum sensing (QS) based on the production (via the LuxI-family proteins) and detection (via the LuxR-family proteins) of N-acyl h...
متن کاملDialkylresorcinols as bacterial signaling molecules.
It is well recognized that bacteria communicate via small diffusible molecules, a process termed quorum sensing. The best understood quorum sensing systems are those that use acylated homoserine lactones (AHLs) for communication. The prototype of those systems consists of a LuxI-like AHL synthase and a cognate LuxR receptor that detects the signal. However, many proteobacteria possess LuxR rece...
متن کاملSpecificity of Signal-Binding via Non-AHL LuxR-Type Receptors
Quorum sensing is a typical communication system among Gram-negative bacteria used to control group-coordinated behavior via small diffusible molecules dependent on cell number. The key components of a quorum sensing system are a LuxI-type synthase, producing acyl-homoserine lactones (AHLs) as signaling molecules, and a LuxR-type receptor that detects AHLs to control expression of specific targ...
متن کامل