Selection of Shared-State Hidden Markov Model Structure Using Bayesian Criterion

نویسندگان

  • Shinji Watanabe
  • Yasuhiro Minami
  • Atsushi Nakamura
  • Naonori Ueda
چکیده

A Shared-State Hidden Markov Model (SS-HMM) has been widely used as an acoustic model in speech recognition. In this paper, we propose a method for constructing SS-HMMs within a practical Bayesian framework. Our method derives the Bayesian model selection criterion for the SS-HMM based on the variational Bayesian approach. The appropriate phonetic decision tree structure of the SS-HMM is found by using the Bayesian criterion. Unlike the conventional asymptotic criteria, this criterion is applicable even in the case of an insufficient amount of training data. The experimental results on isolated word recognition demonstrate that the proposed method does not require the tuning parameter that must be tuned according to the amount of training data, and is useful for selecting the appropriate SS-HMM structure for practical use. key words: speech recognition, shared-state HMM, model structure selection, variational Bayes, Bayesian criterion

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Constructing shared-state hidden Markov models based on a Bayesian approach

In this paper, we propose a method for constructing sharedstate triphone HMMs (SST-HMMs) within a practical Bayesian framework. In our method, Bayesian model selection criterion is derived for SST-HMM based on the Variational Bayesian approach. The appropriate phonetic decision tree structure of SST-HMM is found by using the criterion according to a given data set. This criterion, unlike the co...

متن کامل

Constructing Shared-state Hidden Marko Approach

In this paper, we propose a method for constructing sharedstate triphone HMMs (SST-HMMs) within a practical Bayesian framework. In our method, Bayesian model selection criterion is derived for SST-HMM based on the Variational Bayesian approach. The appropriate phonetic decision tree structure of SST-HMM is found by using the criterion according to a given data set. This criterion, unlike the co...

متن کامل

Hidden Markov Random Field Model Selection Criteria Based on Mean Field-Like Approximations

Hidden Markov random fields appear naturally in problems such as image segmentation, where an unknown class assignment has to be estimated from the observations at each pixel. Choosing the probabilistic model that best accounts for the observations is an important first step for the quality of the subsequent estimation and analysis. A commonly used selection criterion is the Bayesian Informatio...

متن کامل

Factorized Asymptotic Bayesian Hidden Markov Models

This paper addresses the issue of model selection for hidden Markov models (HMMs). We generalize factorized asymptotic Bayesian inference (FAB), which has been recently developed for model selection on independent hidden variables (i.e., mixture models), for time-dependent hidden variables. As with FAB in mixture models, FAB for HMMs is derived as an iterative lower bound maximization algorithm...

متن کامل

A Model Selection Criterion for Classification: Application to HMM Topology Optimization

This paper proposes a model selection criterion for classification problems. The criterion focuses on selecting models that are discriminant instead of models based on the Occam’s razor principle of parsimony between accurate modeling and complexity. The criterion, dubbed Discriminative Information Criterion (DIC), is applied to the optimization of Hidden Markov Model topology aimed at the reco...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • IEICE Transactions

دوره 88-D  شماره 

صفحات  -

تاریخ انتشار 2005