Inner meniscus cells maintain higher chondrogenic phenotype compared with outer meniscus cells.
نویسندگان
چکیده
Meniscus cells have several distinct properties in cellular morphology and extracellular matrix production. Inner meniscus cells are considered to have more chondrocytic phenotype compared with outer meniscus cells. However, the chondrogenic property of each meniscus cell has not been elucidated in detail. In this study, we investigated the difference between human inner and outer meniscus-derived cells in extracellular matrix deposition and chondrogenic potential. Monolayer-cultured inner meniscus cells showed small and ovoid shapes though slender and fibroblastic cells were obtained from outer half of human meniscus. The syntheses of type II collagen and safranin O-stained proteoglycans were increased in chondrogenic pellets derived from inner meniscus cells, rather than in outer meniscus cell-derived pellets. On the other hand, adipogenic lipid vacuoles were equally accumulated in both inner and outer meniscus cells after adipogenic treatment. Chondrogenic treatments also enhanced the expression of chondrogenic marker genes, such as Sry-type HMG box (SOX) 9, Scleraxis, and alpha1(II) collagen, in inner meniscus cells. However, SOX9 expression was not increased in outer meniscus cells even after chondrogenic treatment. This study demonstrated that inner meniscus cells maintained higher chondrogenic potential compared with outer meniscus cells. Our results suggest that the difference between inner and outer meniscus cells in chondrogenic property might have an essential role in preserving a zone-specific meniscal feature.
منابع مشابه
Regional effects of enzymatic digestion on knee meniscus cell yield and phenotype for tissue engineering.
An abundant cell source is the cornerstone of most tissue engineering strategies, but extracting cells from the knee meniscus is hindered by its dense fibrocartilaginous matrix. Identifying a method to efficiently isolate meniscus cells is important, as it can reduce the cost and effort required to perform meniscus engineering research. In this study, six enzymatic digestion regimens used for c...
متن کاملHuman meniscus cells express hypoxia inducible factor-1α and increased SOX9 in response to low oxygen tension in cell aggregate culture
In previous work we demonstrated that the matrix-forming phenotype of cultured human cells from whole meniscus was enhanced by hypoxia (5% oxygen). Because the meniscus contains an inner region that is devoid of vasculature and an outer vascular region, here we investigate, by gene expression analysis, the separate responses of cells isolated from the inner and outer meniscus to lowered oxygen,...
متن کاملBiomechanics of meniscus cells: regional variation and comparison to articular chondrocytes and ligament cells.
Central to understanding mechanotransduction in the knee meniscus is the characterization of meniscus cell mechanics. In addition to biochemical and geometric differences, the inner and outer regions of the meniscus contain cells that are distinct in morphology and phenotype. This study investigated the regional variation in meniscus cell mechanics in comparison with articular chondrocytes and ...
متن کاملDecreased hypertrophic differentiation accompanies enhanced matrix formation in co-cultures of outer meniscus cells with bone marrow mesenchymal stromal cells
INTRODUCTION The main objective of this study was to determine whether meniscus cells from the outer (MCO) and inner (MCI) regions of the meniscus interact similarly to or differently with mesenchymal stromal stem cells (MSCs). Previous study had shown that co-culture of meniscus cells with bone marrow-derived MSCs result in enhanced matrix formation relative to mono-cultures of meniscus cells ...
متن کاملMatrix forming characteristics of inner and outer human meniscus cells on 3D collagen scaffolds under normal and low oxygen tensions
BACKGROUND Limited intrinsic healing potential of the meniscus and a strong correlation between meniscal injury and osteoarthritis have prompted investigation of surgical repair options, including the implantation of functional bioengineered constructs. Cell-based constructs appear promising, however the generation of meniscal constructs is complicated by the presence of diverse cell population...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Connective tissue research
دوره 52 6 شماره
صفحات -
تاریخ انتشار 2011