Sampling Probability and Inference

ثبت نشده
چکیده

The second part of the book looks into the probabilistic foundation of statistical analysis, which originates in probabilistic sampling, and introduces the reader to the arena of hypothesis testing. Chapter 5 explores the main random and controllable source of error, sampling, as opposed to non-sampling errors, potentially very dangerous and unknown. It shows the statistical advantages of extracting samples using probabilistic rules, illustrating the main sampling techniques with an introduction to the concept of estimation associated with precision and accuracy. Non-probability techniques, which do not allow quantification of the sampling error, are also briefly reviewed. Chapter 6 explains the principles of hypothesis testing based on probability theories and the sampling principles of previous chapter. It also explains how to compute confidence intervals and how statistics allow one to test hypotheses on one or two samples. Chapter 7 extends the discussion to the case of more than two samples, through a class of techniques which goes under the name of analysis of variance. The principles are explained and with the aid of SPSS examples the chapter provides a quick introduction to advanced and complex designs under the broader general linear modelling approach.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Cost Analysis of Acceptance Sampling Models Using Dynamic Programming and Bayesian Inference Considering Inspection Errors

Acceptance Sampling models have been widely applied in companies for the inspection and testing the raw material as well as the final products. A number of lots of the items are produced in a day in the industries so it may be impossible to inspect/test each item in a lot. The acceptance sampling models only provide the guarantee for the producer and consumer that the items in the lots are acco...

متن کامل

Moment-based Inference with Stratified Data

Many data sets used by economists and other social scientists are collected by stratified sampling. The sampling scheme used to collect the data induces a probability distribution on the observed sample that differs from the target or underlying distribution for which inference is to be made. If this effect is not taken into account, subsequent statistical inference can be seriously biased. Thi...

متن کامل

Combining Probability and Non-Probability Sampling Methods: Model-Aided Sampling and the O*NET Data Collection Program

This paper presents a brief synopsis of the historical development of hybrid sampling designs that combine traditional probability based sampling techniques with non-probability based quota designs to create model-aided sampling (MAS) designs. The MAS approach is illustrated for an application to a national business establishment survey called the Occupational Information Network (O*NET) Data C...

متن کامل

Statistical Inference Without Frequentist Justifications

Statistical inference is often justified by long-run properties of the sampling distributions, such as the repeated sampling rationale. These are frequentist justifications of statistical inference. I argue, in line with existing philosophical literature, but against a widespread image in empirical science, that these justifications are flawed. Then I propose a novel interpretation of probabili...

متن کامل

Measuring the Hardness of Stochastic Sampling on Bayesian Networks with Deterministic Causalities: the k-Test

Approximate Bayesian inference is NP-hard. Dagum and Luby defined the Local Variance Bound (LVB) to measure the approximation hardness of Bayesian inference on Bayesian networks, assuming the networks model strictly positive joint probability distributions, i.e. zero probabilities are not permitted. This paper introduces the k-test to measure the approximation hardness of inference on Bayesian ...

متن کامل

Mean Field Inference in Dependency Networks: An Empirical Study

Dependency networks are a compelling alternative to Bayesian networks for learning joint probability distributions from data and using them to compute probabilities. A dependency network consists of a set of conditional probability distributions, each representing the probability of a single variable given its Markov blanket. Running Gibbs sampling with these conditional distributions produces ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2007