RNA editing of hepatitis B virus transcripts by activation-induced cytidine deaminase.
نویسندگان
چکیده
Activation-induced cytidine deaminase (AID) is essential for the somatic hypermutation (SHM) and class-switch recombination (CSR) of Ig genes. The mechanism by which AID triggers SHM and CSR has been explained by two distinct models. In the DNA deamination model, AID converts cytidine bases in DNA into uridine. The uridine is recognized by the DNA repair system, which produces DNA strand breakages and point mutations. In the alternative model, RNA edited by AID is responsible for triggering CSR and SHM. However, RNA deamination by AID has not been demonstrated. Here we found that C-to-T and G-to-A mutations accumulated in hepatitis B virus (HBV) nucleocapsid DNA when AID was expressed in HBV-replicating hepatic cell lines. AID expression caused C-to-T mutations in the nucleocapsid DNA of RNase H-defective HBV, which does not produce plus-strand viral DNA. Furthermore, the RT-PCR products of nucleocapsid viral RNA from AID-expressing cells exhibited significant C-to-T mutations, whereas viral RNAs outside the nucleocapsid did not accumulate C-to-U mutations. Moreover, AID was packaged within the nucleocapsid by forming a ribonucleoprotein complex with HBV RNA and the HBV polymerase protein. The encapsidation of the AID protein with viral RNA and DNA provides an efficient environment for evaluating AID's RNA and DNA deamination activities. A bona fide RNA-editing enzyme, apolipoprotein B mRNA editing catalytic polypeptide 1, induced a similar level of C-to-U mutations in nucleocapsid RNA as AID. Taken together, the results indicate that AID can deaminate the nucleocapsid RNA of HBV.
منابع مشابه
Associations between activation-induced cytidine deaminase/apolipoprotein B mRNA editing enzyme, catalytic polypeptide-like cytidine deaminase expression, hepatitis B virus (HBV) replication and HBV-associated liver disease (Review)
The hepatitis B virus (HBV) infection is a major risk factor in the development of chronic hepatitis (CH) and hepatocellular carcinoma (HCC). The activation‑induced cytidine deaminase (AID)/apolipoprotein B mRNA editing enzyme, catalytic polypeptide‑like (APOBEC) family of cytidine deaminases is significant in innate immunity, as it restricts numerous viruses, including HBV, through hypermutati...
متن کاملHepatitis B virus X protein is capable of down-regulating protein level of host antiviral protein APOBEC3G
The apolipoprotein B mRNA editing catalytic polypeptide-like (APOBEC) family proteins bind RNA and single-stranded DNA, and create C-to-U base modifications through cytidine deaminase activity. APOBEC3G restricts human immunodeficiency virus 1 (HIV-1) infection by creating hypermutations in proviral DNA, while HIV-1-encoded vif protein antagonizes such restriction by targeting APOBEC3G for degr...
متن کاملDeamination-independent inhibition of hepatitis B virus reverse transcription by APOBEC3G.
The APOBEC3 family of mammalian cytidine deaminases, including APOBEC3G (A3G), has been shown to function as innate antiviral factors against retroviruses and can also suppress the replication of the hepatitis B virus (HBV). The mechanism by which A3G inhibits HBV replication remains to be elucidated. In this study, we show that the inhibitory effect of APOBEC3 proteins on HBV replication was m...
متن کاملSpecific expression of activation-induced cytidine deaminase (AID), a novel member of the RNA-editing deaminase family in germinal center B cells.
We have identified a novel gene referred to as activation-induced deaminase (AID) by subtraction of cDNAs derived from switch-induced and uninduced murine B lymphoma CH12F3-2 cells, more than 80% of which switch exclusively to IgA upon stimulation. The amino acid sequence encoded by AID cDNA is homologous to that of apolipoprotein B (apoB) mRNA-editing enzyme, catalytic polypeptide 1 (APOBEC-1)...
متن کاملIdentification of DNA cleavage- and recombination-specific hnRNP cofactors for activation-induced cytidine deaminase.
Activation-induced cytidine deaminase (AID) is essential for antibody class switch recombination (CSR) and somatic hypermutation (SHM). AID originally was postulated to function as an RNA-editing enzyme, based on its strong homology with apolipoprotein B mRNA-editing enzyme, catalytic polypeptide 1 (APOBEC1), the enzyme that edits apolipoprotein B-100 mRNA in the presence of the APOBEC cofactor...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Proceedings of the National Academy of Sciences of the United States of America
دوره 110 6 شماره
صفحات -
تاریخ انتشار 2013