Molecular dynamics simulations of nucleation from vapor to solid composed of Lennard-Jones molecules.

نویسندگان

  • Kyoko K Tanaka
  • Hidekazu Tanaka
  • Tetsuo Yamamoto
  • Katsuyuki Kawamura
چکیده

We performed molecular dynamics (MD) simulations of nucleation from vapor at temperatures below the triple point for systems consisting of 10(4)-10(5) Lennard-Jones (L-J) type molecules in order to test nucleation theories at relatively low temperatures. Simulations are performed for a wide range of initial supersaturation ratio (S(0) ≃ 10-10(8)) and temperature (kT = 0.2-0.6ε), where ε and k are the depth of the L-J potential and the Boltzmann constant, respectively. Clusters are nucleated as supercooled liquid droplets because of their small size. Crystallization of the supercooled liquid nuclei is observed after their growth slows. The classical nucleation theory (CNT) significantly underestimates the nucleation rates (or the number density of critical clusters) in the low-T region. The semi-phenomenological (SP) model, which corrects the CNT prediction of the formation energy of clusters using the second virial coefficient of a vapor, reproduces the nucleation rate and the cluster size distributions with good accuracy in the low-T region, as well as in the higher-T cases considered in our previous study. The sticking probability of vapor molecules onto the clusters is also obtained in the present MD simulations. Using the obtained values of sticking probability in the SP model, we can further refine the accuracy of the SP model.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Instructions for use Title Molecular dynamics simulations of nucleation from vapor to solid composed of Lennard-Jones molecules

We performed molecular dynamics (MD) simulations of nucleation from vapor at temperatures below the triple point for systems consisting of 10 4-10 5 Lennard-Jones (L-J) type molecules in order to test nucleation theories at relatively low temperatures. Simulations are performed for a wide range of initial supersaturation ratio (S 0 10 − 10 8) and temperature (kT = 0.2 − 0.6ε), where ε and k are...

متن کامل

Molecular Dynamics Simulation of Vapor Bubble Nucleation on a Solid Surface

Heterogeneous nucleation of vapor bubbles on a solid surface was simulated by the molecular dynamics method. Liquid argon between parallel solid surfaces was gradually expanded, until a stable vapor bubble was nucleated. Argon liquid was represented by Lennard-Jones molecules and each surface was represented by three layers of harmonic molecules with the constant temperature heat bath model usi...

متن کامل

A Molecular Dynamics Simulation of a Bubble Nucleation on Solid Surface

A heterogeneous nucleation of a vapor bubble on a solid surface was simulated by the molecular dynamics method. Liquid argon between parallel solid surfaces was gradually expanded, until a vapor bubble was nucleated. Argon liquid was represented by 5488 Lennard-Jones molecules and each surface was represented by three layers of harmonic molecules with the constant temperature heat bath model. W...

متن کامل

Molecular Dynamics Simulation of Heterogeneous Nucleation of a Liquid Droplet on a Solid Surface

Heterogeneous nucleation of a liquid droplet on a solid surface was simulated with the molecular dynamics method. Argon vapor was represented by 5,760 Lennard-Jones molecules and the solid surface was represented by one layer of 4,464 harmonic molecules with the constant temperature heat bath model using the phantom molecules. The potential parameter between a solid molecule and a vapor molecul...

متن کامل

Molecular Dynamics Simulation of Heterogeneous Nucleation of Liquid Droplet on Solid Surface

The heterogeneous nucleation of liquid droplet on a solid surface was simulated with the molecular dynamics method. Argon vapor was represented by 5760 Lennard-Jones molecules and the solid surface was represented by one layer of 1020 harmonic molecules with the constant temperature heat bath model using the phantom molecules. The potential parameter between solid molecule and vapor molecule wa...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The Journal of chemical physics

دوره 134 20  شماره 

صفحات  -

تاریخ انتشار 2011