Adhesion between highly stretchable materials.
نویسندگان
چکیده
Recently developed high-speed ionic devices require adherent laminates of stretchable and dissimilar materials, such as gels and elastomers. Adhesion between stretchable and dissimilar materials also plays important roles in medicine, stretchable electronics, and soft robots. Here we develop a method to characterize adhesion between materials capable of large, elastic deformation. We apply the method to measure the debond energy of elastomer-hydrogel bilayers. The debond energy between an acrylic elastomer and a polyacrylamide hydrogel is found to be about 0.5 J m(-2), independent of the thickness and the crosslink density of the hydrogel. This low debond energy, however, allows the bilayer to be adherent and highly stretchable, provided that the hydrogel is thin and compliant. Furthermore, we demonstrate that nanoparticles applied at the interface can improve adhesion between the elastomer and the hydrogel.
منابع مشابه
Application of Liquid-Metal GaIn Alloys to Soft-matter Capacitance and Related Stretchable Electronics
Stretchable electronics is an exciting new field of developing technology, allowing devices to undergo large deformations such as, bending, twisting, stretching and compression. As such, they can be easily interfaced with the human body, conforming to its contours and enabling a range of advances in electronic skins. Creating stretchable circuits, however, is not straight forward, as most elect...
متن کاملFatigue-free, superstretchable, transparent, and biocompatible metal electrodes.
Next-generation flexible electronics require highly stretchable and transparent electrodes. Few electronic conductors are both transparent and stretchable, and even fewer can be cyclically stretched to a large strain without causing fatigue. Fatigue, which is often an issue of strained materials causing failure at low strain levels of cyclic loading, is detrimental to materials under repeated l...
متن کاملA theoretical model of reversible adhesion in shape memory surface relief structures and its application in transfer printing
Transfer printing is an important and versatile tool for deterministic assembly and integration of micro/nanomaterials on unusual substrates, with promising applications in fabrication of stretchable and flexible electronics. The shape memory polymers (SMP) with triangular surface relief structures are introduced to achieve large, reversible adhesion, thereby with potential applications in temp...
متن کاملHighly conductive and stretchable silver nanowire conductors.
IO N Materials that are both conductive and stretchable could enable a spectrum of applications such as stretchable displays, [ 1 ] stretchable radiofrequency antennas, [ 2 ] artifi cial muscles [ 3 ] and conformal skin sensors. [ 4–7 ] A variety of such materials have been recently developed, such as wavy thin metals, [ 8 , 9 ] metal-coated net-shaped plastic fi lm, [ 10 ] graphene fi lms [ 11...
متن کاملMaterials and structures for stretchable energy storage and conversion devices.
Stretchable energy storage and conversion devices (ESCDs) are attracting intensive attention due to their promising and potential applications in realistic consumer products, ranging from portable electronics, bio-integrated devices, space satellites, and electric vehicles to buildings with arbitrarily shaped surfaces. Material synthesis and structural design are core in the development of high...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Soft matter
دوره 12 4 شماره
صفحات -
تاریخ انتشار 2016