Coupled mean flow-amplitude equations for nearly inviscid parametrically driven surface waves.

نویسندگان

  • Edgar Knobloch
  • Carlos Martel
  • José M Vega
چکیده

Nearly inviscid parametrically excited surface gravity-capillary waves in two-dimensional periodic domains of finite depth and both small and large aspect ratio are considered. Coupled equations describing the evolution of the amplitudes of resonant left- and right-traveling waves and their interaction with a mean flow in the bulk are derived, and the conditions for their validity established. In general the mean flow consists of an inviscid part together with a viscous streaming flow driven by a tangential stress due to an oscillating viscous boundary layer near the free surface and a tangential velocity due to a bottom boundary layer. These forcing mechanisms are important even in the limit of vanishing viscosity, and provide boundary conditions for the Navier-Stokes equation satisfied by the mean flow in the bulk. The streaming flow is responsible for several instabilities leading to pattern drift.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Nearly inviscid Faraday waves in annular containers of moderately large aspect ratio

Nearly inviscid parametrically excited surface gravity–capillary waves in two-dimensional domains of finite depth and large aspect ratio are considered. Coupled equations describing the evolution of the amplitudes of resonant leftand right-traveling waves and their interaction with a mean flow in the bulk are derived, and the conditions for their validity established. Under suitable conditions ...

متن کامل

Coupled Amplitude-Streaming Flow Equations for Nearly Inviscid Faraday Waves in Small Aspect Ratio Containers

We derive a set of asymptotically exact coupled amplitude-streaming flow (CASF) equations governing the evolution of weakly nonlinear nearly inviscid multimode Faraday waves and the associated streaming flow in finite geometries. The streaming flow is found to play a particularly important role near mode interactions. Such interactions come about either through a suitable choice of parameters o...

متن کامل

Pressure-Velocity Coupled Finite Volume Solution of Steady Incompressible Invscid Flow Using Artificial Compressibility Technique

Application of the computer simulation for solving the incompressible flow problems motivates developing efficient and accurate numerical models. The set of Inviscid Incompressible Euler equations can be applied for wide range of engineering applications. For the steady state problems, the equation of continuity can be simultaneously solved with the equations of motion in a coupled manner using...

متن کامل

Wave Propagation at the Boundary Surface of Inviscid Fluid Half-Space and Thermoelastic Diffusion Solid Half-Space with Dual-Phase-Lag Models

The present investigation deals  with the reflection and transmission phenomenon due to incident plane longitudinal wave at a plane interface between inviscid fluid half-space and a thermoelastic diffusion solid half-space with dual-phase-lag heat transfer (DPLT) and dual-phase-lag diffusion (DPLD) models. The theory of thermoelasticity with dual-phase-lag heat transfer developed by Roychoudhar...

متن کامل

Interfacial waves due to a singularity in a system of two semi-infinite fluids

The three-dimensional interfacial waves due to a fundamental singularity steadily moving in a system of two semi-infinite immiscible fluids of different densities are investigated analytically. The two fluids are assumed to be incompressible and homogenous. There are three systems to be considered: one with two inviscid fluids, one with an upper viscous and a lower inviscid fluid, and one with ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Annals of the New York Academy of Sciences

دوره 974  شماره 

صفحات  -

تاریخ انتشار 2002