A Generalized Cantor Theorem
نویسندگان
چکیده
A well known theorem of Cantor asserts that the cardinal of the power-set of a given set always exceeds the cardinal of the original set. An analogous result for sets having additional structure is the well known theorem that the set of initial segments of a well ordered set always has order type greater than the original set. These two theorems suggest that there should be a similar result for general partially ordered sets. In formulating such a theorem an extension to partially ordered sets of the notion of an initial segment of a well ordered set is required. Of the several possibilities for this choice, the most natural one is the concept of an order ideal. If P is a partially ordered set with order relation ;£, then a subset 7 of P is an order ideal if a^bEP implies aEP. The set 0(P) of all order ideals of P is easily seen to be a complete partially ordered set when ordered by set inclusion, since the union and intersection of any set of order ideals is again an order ideal. Note that the empty set is specifically included among the order ideals. The general theorem can then be formulated as follows:
منابع مشابه
Birkhoff's Theorem from a geometric perspective: A simple example
From Hilbert's theorem of zeroes, and from Noether's ideal theory, Birkhoff derived certain algebraic concepts (as explained by Tholen) that have a dual significance in general toposes, similar to their role in the original examples of algebraic geometry. I will describe a simple example that illustrates some of the aspects of this relationship. The dualization from algebra to geometr...
متن کاملCompleteness in Probabilistic Metric Spaces
The idea of probabilistic metric space was introduced by Menger and he showed that probabilistic metric spaces are generalizations of metric spaces. Thus, in this paper, we prove some of the important features and theorems and conclusions that are found in metric spaces. At the beginning of this paper, the distance distribution functions are proposed. These functions are essential in defining p...
متن کاملFull Groups and Soficity
First, we answer a question of Pestov, by proving that the full group of a sofic equivalence relation is a sofic group. Then, we give a short proof of the theorem of Grigorchuk and Medynets that the topological full group of a minimal Cantor homeomorphism is LEF. Finally, we show that for certain non-amenable groups all the generalized lamplighter groups are sofic.
متن کاملA Carleson Type Theorem for a Cantor Group Model of the Scattering Transform
We consider a basic d-adic model for the scattering transform on the line. We prove L bounds for this scattering transform and a weak L bound for a Carleson type maximal operator (Theorem 1.4). The latter implies boundedness of d-adic models of generalized eigenfunctions of Dirac type operators with potential in L(IR). We show that this result cannot be obtained by estimating the terms in the n...
متن کاملAn Lp-Lq-version Of Morgan's Theorem For The Generalized Fourier Transform Associated with a Dunkl Type Operator
The aim of this paper is to prove new quantitative uncertainty principle for the generalized Fourier transform connected with a Dunkl type operator on the real line. More precisely we prove An Lp-Lq-version of Morgan's theorem.
متن کاملGENERALIZED PRINCIPAL IDEAL THEOREM FOR MODULES
The Generalized Principal Ideal Theorem is one of the cornerstones of dimension theory for Noetherian rings. For an R-module M, we identify certain submodules of M that play a role analogous to that of prime ideals in the ring R. Using this definition, we extend the Generalized Principal Ideal Theorem to modules.
متن کامل