A Groupoid Approach to Quantization
نویسنده
چکیده
Many interesting C∗-algebras can be viewed as quantizations of Poisson manifolds. I propose that a Poisson manifold may be quantized by a twisted polarized convolution C∗-algebra of a symplectic groupoid. Toward this end, I define polarizations for Lie groupoids and sketch the construction of this algebra. A large number of examples show that this idea unifies previous geometric constructions, including geometric quantization of symplectic manifolds and the C∗-algebra of a Lie groupoid.
منابع مشابه
Quantization and the Tangent Groupoid *
This is a survey of the relationship between C *-algebraic deformation quan-tization and the tangent groupoid in noncommutative geometry, emphasizing the role of index theory. We first explain how C *-algebraic versions of deformation quantization are related to the bivariant E-theory of Connes and Higson. With this background, we review how Weyl–Moyal quantization may be described using the ta...
متن کاملRevisiting the Tangent Groupoid
The setup of a quantization in a Tangent Groupoid structure is reviewed from the point of view of the action of Butcher Group. In this sense, quantization is implied by renormalization.
متن کاملQuantization of Poisson Algebras Associated To
We prove the existence of a strict deformation quantization for the canonical Poisson structure on the dual of an integrable Lie algebroid. It follows that any Lie groupoid C-algebra may be regarded as a result of a quantization procedure. The C-algebra of the tangent groupoid of a given Lie groupoid G (with Lie algebra G) is the C-algebra of a continuous field of C-algebras over R with fibers ...
متن کاملOn the Geometry of Prequantization Spaces
Given a Poisson (or more generally Dirac) manifold P , there are two approaches to its geometric quantization: one involves a circle bundle Q over P endowed with a Jacobi (or Jacobi-Dirac) structure; the other one involves a circle bundle with a (pre-) contact groupoid structure over the (pre-) symplectic groupoid of P . We study the relation between these two prequantization spaces. We show th...
متن کاملLie Groupoid C∗-Algebras and Weyl Quantization
A strict quantization of a Poisson manifold P on a subset I ⊆ R containing 0 as an accumulation point is defined as a continuous field of C∗-algebras {Ah̄}h̄∈I , with A0 = C0(P ), a dense subalgebra Ã0 of C0(P ) on which the Poisson bracket is defined, and a set of continuous cross-sections {Q(f )} f∈Ã0 for which Q0(f ) = f . Here Qh̄(f ∗) = Qh̄(f )∗ for all h̄ ∈ I , whereas for h̄ → 0 one requires t...
متن کامل