Physiological and Molecular Responses to Excess Boron in Citrus macrophylla W
نویسندگان
چکیده
This work provides insight into several mechanisms involved in boron (B) regulation pathway in response to high B conditions in Citrus. The study was carried out in Citrus macrophylla W. (Cm) seedlings cultured "in vitro" in media with 50 or 400 μM H3BO3 (control, Ct, and B-excess, +B, plants, respectively). Growth parameters, B concentration, leaf chlorophyll (Chl) concentration, the expression of the main putative genes involved in B transport and distribution, and leaf and root proline and malonaldehyde (MDA) concentrations, were assessed. Excess B led to high B concentration in +B plants (3.8- and 1.4-fold in leaves and roots, respectively) when compared with Ct ones. However, a minor effect was recorded in the plant (incipient visual symptoms, less than 27% reduction in root growth and 26% decrease in Chl b concentration). B toxicity down-regulated by half the expression level of putative B transporter genes NIP5 and PIP1. CmBOR1 gene was not repressed in +B plants and B accumulated in the shoots. High B level increased the transcripts of putative gene TIP5, involved in B transport across the tonoplast, by 3.3- and 2.4-fold in leaves and roots, respectively. The activity of V-PPiase proton pump, related with the electrochemical gradient in the vacuole, was also enhanced in +B organs. B toxicity up-regulated putative BOR4 gene (2.1- and 2.7-fold in roots and leaves, respectively), which codifies for an active efflux B transporter. Accordingly, B was located in +B plants preferently in an insoluble form on cell walls. Finally, excess B caused a significant rise in proline concentration (51% and 34% in roots and leaves, respectively), while the MDA level did not exceed 20%. In conclusion, Cm tolerance to a high B level is likely based on the synergism of several specific mechanisms against B toxicity, including: 1/ down-regulation of NIP5 and PIP1 boron transporters; 2/ activation of B efflux from cells due to the up-regulation of putative BOR4 gene; 3/ compartmentation of B in the vacuole through TIP5 transporter activation and the acidification of the organelle; 4/ insolubilisation of B and deposition in cell walls preventing from cytoplasm damage; and, 5/ induction of an efficient antioxidant system through proline accumulation.
منابع مشابه
Correction: Physiological and Molecular Responses to Excess Boron in Citrus macrophylla W
Fig 6, " Boron concentration ([B f ], μg g-1 DW) and boron content (B f , μg) in (A) soluble in water, (B) soluble in organic solvents and (C) insoluble fractions measured in roots and leaves of Citrus macrophylla seedlings grown for 25 days in B-normal (50 μM, Ct) and B-toxic (400 μM, +B) nutrient solutions, " appears incorrectly. Please see the corrected Fig 6 here. Copyright: © 2015 Martínez...
متن کاملCorrection: Correction: Physiological and Molecular Responses to Excess Boron in Citrus macrophylla W
The incorrect image for Fig 6 was included in the correction published on September 4, 2015. The publisher apologizes for the error. Please view the correct Fig 6 here. open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
متن کاملمطالعه اثر نوع پایه و پیوندک مرکبات بر میزان جذب بر
In arid and semi arid regions with high boron content in irrigation water, boron toxicity is a considerable problem. Critical levels of boron in irrigation water variy between 1 and 10 mg/l for sensitive and resistant plants, respectively. In southern parts of Iran especially large citrus production region as Jahrom and Giroft cities, high boron content in irrigation water at toxic levels in mo...
متن کاملمطالعه اثر نوع پایه و پیوندک مرکبات بر میزان جذب بر
In arid and semi arid regions with high boron content in irrigation water, boron toxicity is a considerable problem. Critical levels of boron in irrigation water variy between 1 and 10 mg/l for sensitive and resistant plants, respectively. In southern parts of Iran especially large citrus production region as Jahrom and Giroft cities, high boron content in irrigation water at toxic levels in mo...
متن کاملInduction of Phenolic Compounds is Affected by Boron Supply in Marshmallow (Althaea officinalis L. ) Cells
Boron (B) is a non-metal micronutrient which is essential for plants growth and development. Formation of boron complex with cell wall matrix and phenolic compounds is a definite influence of boron in physiological process. It has been suggested that B-toxicity and deficiency may induce excess production of reactive oxygen species thereby promote defense responses by antioxidant enzymes or non-...
متن کامل