Quantifying rooting at depth in a wheat doubled haploid population with introgression from wild emmer

نویسندگان

  • Christina K Clarke
  • Peter J Gregory
  • Martin Lukac
  • Amanda J Burridge
  • Alexandra M Allen
  • Keith J Edwards
  • Mike J Gooding
چکیده

Background and Aims The genetic basis of increased rooting below the plough layer, post-anthesis in the field, of an elite wheat line (Triticum aestivum 'Shamrock') with recent introgression from wild emmer (T. dicoccoides), is investigated. Shamrock has a non-glaucous canopy phenotype mapped to the short arm of chromosome 2B (2BS), derived from the wild emmer. A secondary aim was to determine whether genetic effects found in the field could have been predicted by other assessment methods. Methods Roots of doubled haploid (DH) lines from a winter wheat ('Shamrock' × 'Shango') population were assessed using a seedling screen in moist paper rolls, in rhizotrons to the end of tillering, and in the field post-anthesis. A linkage map was produced using single nucleotide polymorphism markers to identify quantitative trait loci (QTLs) for rooting traits. Key Results Shamrock had greater root length density (RLD) at depth than Shango, in the field and within the rhizotrons. The DH population exhibited diversity for rooting traits within the three environments studied. QTLs were identified on chromosomes 5D, 6B and 7B, explaining variation in RLD post-anthesis in the field. Effects associated with the non-glaucous trait on RLD interacted significantly with depth in the field, and some of this interaction mapped to 2BS. The effect of genotype was strongly influenced by the method of root assessment, e.g. glaucousness expressed in the field was negatively associated with root length in the rhizotrons, but positively associated with length in the seedling screen. Conclusions To our knowledge, this is the first study to identify QTLs for rooting at depth in field-grown wheat at mature growth stages. Within the population studied here, our results are consistent with the hypothesis that some of the variation in rooting is associated with recent introgression from wild emmer. The expression of genetic effects differed between the methods of root assessment.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Development of yellow rust resistant doubled haploid lines of wheat through wheat ´ maize Crosses

In order to produce doubled haploid lines of bread wheat resistant to strip or yellow rust, three F1 wheat hybrids were crossed using pollens of three maize hybrids. Out of 1071 pollinated florets, success in seed set ranged from 63.1% to 93.3% (mean 78%). Differences in seed set among the crosses were not significant. Embryo formation in the seeds developed on different crosses also varied fro...

متن کامل

Ancestral QTL Alleles from Wild Emmer Wheat Enhance Root Development under Drought in Modern Wheat

A near-isogenic line (NIL-7A-B-2), introgressed with a quantitative trait locus (QTL) on chromosome 7AS from wild emmer wheat (Triticum turgidum ssp. dicoccoides) into the background of bread wheat (T. aestivum L.) cv. BarNir, was recently developed and studied in our lab. NIL-7A-B-2 exhibited better productivity and photosynthetic capacity than its recurrent parent across a range of environmen...

متن کامل

Ancestral QTL Alleles from Wild Emmer Wheat Improve Drought Resistance and Productivity in Modern Wheat Cultivars

Wild emmer wheat (Triticum turgidum ssp. dicoccoides) is considered a promising source for improving stress resistances in domesticated wheat. Here we explored the potential of selected quantitative trait loci (QTLs) from wild emmer wheat, introgressed via marker-assisted selection, to enhance drought resistance in elite durum (T. turgidum ssp. durum) and bread (T. aestivum) wheat cultivars. Th...

متن کامل

Characterization of an Integrated Active Glu-1Ay Allele in Common Wheat from Wild Emmer and Its Potential Role in Flour Improvement.

Glu-1Ay, one of six genes encoding a high molecular weight glutenin subunit (HMW-GS), is frequently silenced in hexaploid common wheat. Here, an active allele of Glu-1Ay was integrated from wild emmer wheat (Triticum turgidum ssp. dicoccoides) accession D97 into the common wheat (Triticum aestivum) cultivar Chuannong 16 via the repeated self-fertilization of the pentaploid interspecific hybrid,...

متن کامل

Use of doubled haploid technology for development of stable drought tolerant bread wheat (Triticum aestivum L.) transgenics.

Anther culture-derived haploid embryos were used as explants for Agrobacterium-mediated genetic transformation of bread wheat (Triticum aestivum L. cv CPAN1676) using barley HVA1 gene for drought tolerance. Regenerated plantlets were checked for transgene integration in T₀ generation, and positive transgenic haploid plants were doubled by colchicine treatment. Stable transgenic doubled haploid ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 120  شماره 

صفحات  -

تاریخ انتشار 2017