Self-doping of molecular quantum-dot cellular automata: mixed valence zwitterions.
نویسندگان
چکیده
Molecular quantum-dot cellular automata (QCA) is a promising paradigm for realizing molecular electronics. In molecular QCA, binary information is encoded in the distribution of intramolecular charge, and Coulomb interactions between neighboring molecules combine to create long-range correlations in charge distribution that can be exploited for signal transfer and computation. Appropriate mixed-valence species are promising candidates for single-molecule device operation. A complication arises because many mixed-valence compounds are ions and the associated counterions can potentially disrupt the correct flow of information through the circuit. We suggest a self-doping mechanism which incorporates the counterion covalently into the structure of a neutral molecular cell, thus producing a zwitterionic mixed-valence complex. The counterion is located at the geometrical center of the QCA molecule and bound to the working dots via covalent bonds, thus avoiding counterion effects that bias the system toward one binary information state or the other. We investigate the feasibility of using multiply charged anion (MCA) boron clusters, specifically closo-borate dianion, as building blocks. A first principle calculation shows that neutral, bistable, and switchable QCA molecules are possible. The self-doping mechanism is confirmed by molecular orbital analysis, which shows that MCA counterions can be stabilized by the electrostatic interaction between negatively charged counterions and positively charged working dots.
منابع مشابه
Counterion-free molecular quantum-dot cellular automata using mixed valence zwitterions – A double-dot derivative of the [closo-1-CB9H10]− cluster
Article history: Received 20 May 2013 In final form 9 July 2013 Available online 16 July 2013 Molecular quantum-dot cellular automata (QCA) paradigm is a promising approach to molecular electronics. QCA cells can be implemented using mixed-valence compounds. However, the existence of counterions can perturb the local electric field and thus is detrimental to information encoding and processing....
متن کاملDesign of low power random number generators for quantum-dot cellular automata
Quantum-dot cellular automata (QCA) are a promising nanotechnology to implement digital circuits at the nanoscale. Devices based on QCA have the advantages of faster speed, lower power consumption, and greatly reduced sizes. In this paper, we are presented the circuits, which generate random numbers in QCA. Random numbers have many uses in science, art, statistics, cryptography, gaming, gambli...
متن کاملNovel Phase-frequency Detector based on Quantum-dot Cellular Automata Nanotechnology
The electronic industry has grown vastly in recent years, and researchers are trying to minimize circuits delay, occupied area and power consumption as much as possible. In this regard, many technologies have been introduced. Quantum Cellular Automata (QCA) is one of the schemes to design nano-scale digital electronic circuits. This technology has high speed and low power consumption, and occup...
متن کاملNovel efficient fault-tolerant full-adder for quantum-dot cellular automata
Quantum-dot cellular automata (QCA) are an emerging technology and a possible alternative for semiconductor transistor based technologies. A novel fault-tolerant QCA full-adder cell is proposed: This component is simple in structure and suitable for designing fault-tolerant QCA circuits. The redundant version of QCA full-adder cell is powerful in terms of implementing robust digital functions. ...
متن کاملFault-tolerant adder design in quantum-dot cellular automata
Quantum-dot cellular automata (QCA) are an emerging technology and a possible alternative for faster speed, smaller size, and low power consumption than semiconductor transistor based technologies. Previously, adder designs based on conventional designs were examined for implementation with QCA technology. This paper utilizes the QCA characteristics to design a fault-tolerant adder that is more...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Physical chemistry chemical physics : PCCP
دوره 13 33 شماره
صفحات -
تاریخ انتشار 2011