The approximate GCD of inexact polynomials Part II: a multivariate algorithm
نویسندگان
چکیده
This paper presents an algorithm and its implementation for computing the approximate GCD (greatest common divisor) of multivariate polynomials whose coefficients may be inexact. The method and the companion software appears to be the first practical package with such capabilities. The most significant features of the algorithm are its robustness and accuracy as demonstrated in the results of computational experiment. In addition, two variations of a squarefree factorization algorithm for multivariate polynomials are proposed as an application of the GCD algorithm.
منابع مشابه
Computing Approximate GCD of Multivariate Polynomials by Structure Total Least Norm
The problem of approximating the greatest common divisor(GCD) for multivariate polynomials with inexact coefficients can be formulated as a low rank approximation problem with Sylvester matrix. This paper presents a method based on Structured Total Least Norm(STLN) for constructing the nearest Sylvester matrix of given lower rank. We present algorithms for computing the nearest GCD and a certif...
متن کاملComputing Approximate GCD of Univariate Polynomials by Structure Total Least Norm
The problem of approximating the greatest common divisor(GCD) for polynomials with inexact coefficients can be formulated as a low rank approximation problem with Sylvester matrix. This paper presents a method based on Structured Total Least Norm(STLN) for constructing the nearest Sylvester matrix of given lower rank. We present algorithms for computing the nearest GCD and a certified 2-GCD for...
متن کاملApproximate GCD of Multivariate Polynomials
Given two polynomials F and G in R[x1, . . . , xn], we are going to find the nontrivial approximate GCD C and polynomials F , G ∈ R[x1, . . . , xn] such that ||F − CF ′|| < and ||G − CG′|| < , for some and some well defined norm. Many papers 1,2,3,5,8,10,11,13,15 have already discussed the problem in the case n = 1. Few of them 2,10,11 mentioned the case n > 1. Approximate GCD computation of un...
متن کاملStructured Low Rank Approximation of a Bezout Matrix
The task of determining the approximate greatest common divisor (GCD) of more than two univariate polynomials with inexact coefficients can be formulated as computing for a given Bezout matrix a new Bezout matrix of lower rank whose entries are near the corresponding entries of that input matrix. We present an algorithm based on a version of structured nonlinear total least squares (SNTLS) meth...
متن کاملStructured Low Rank Approximation of a Sylvester Matrix
The task of determining the approximate greatest common divisor (GCD) of univariate polynomials with inexact coefficients can be formulated as computing for a given Sylvester matrix a new Sylvester matrix of lower rank whose entries are near the corresponding entries of that input matrix. We solve the approximate GCD problem by a new method based on structured total least norm (STLN) algorithms...
متن کامل