Precision Matrix Estimation in High Dimensional Gaussian Graphical Models with Faster Rates
نویسندگان
چکیده
We present a new estimator for precision matrix in high dimensional Gaussian graphical models. At the core of the proposed estimator is a collection of node-wise linear regression with nonconvex penalty. In contrast to existing estimators for Gaussian graphical models with O(s √ log d/n) estimation error bound in terms of spectral norm, where s is the maximum degree of a graph, the proposed estimator could attain O(s/ √ n+ √ log d/n) spectral norm based convergence rate in the best case, and it is no worse than exiting estimators in general. In addition, our proposed estimator enjoys the oracle property under a milder condition than existing estimators. We show through extensive experiments on both synthetic and real datasets that our estimator outperforms the state-of-the-art estimators.
منابع مشابه
Innovated Scalable Efficient Estimation in Ultra - Large Gaussian Graphical Models
Large-scale precision matrix estimation is of fundamental importance yet challenging in many contemporary applications for recovering Gaussian graphical models. In this paper, we suggest a new approach of innovated scalable efficient estimation (ISEE) for estimating large precision matrix. Motivated by the innovated transformation, we convert the original problem into that of large covariance m...
متن کاملCommunication-efficient Distributed Estimation and Inference for Transelliptical Graphical Models∗
We propose communication-efficient distributed estimation and inference methods for the transelliptical graphical model, a semiparametric extension of the elliptical distribution in the high dimensional regime. In detail, the proposed method distributes the d-dimensional data of size N generated from a transelliptical graphical model into m worker machines, and estimates the latent precision ma...
متن کاملEstimating Structured High-Dimensional Covariance and Precision Matrices: Optimal Rates and Adaptive Estimation
This is an expository paper that reviews recent developments on optimal estimation of structured high-dimensional covariance and precision matrices. Minimax rates of convergence for estimating several classes of structured covariance and precision matrices, including bandable, Toeplitz, and sparse covariance matrices as well as sparse precision matrices, are given under the spectral norm loss. ...
متن کاملStructure Analysis of High Dimensional Tensor Data
Multi-way tensor data have become prevalent in many scientific areas such as genomics and biomedical imaging. We consider a K-way tensor-normal distribution, where the precision matrix for each way has a graphical interpretation. We develop an l1 penalized maximum likelihood estimation and an efficient coordinate descent-based algorithm for model selection and estimation in such tensor normal g...
متن کاملCovariate-Adjusted Precision Matrix Estimation with an Application in Genetical Genomics.
Motivated by analysis of genetical genomics data, we introduce a sparse high dimensional multivariate regression model for studying conditional independence relationships among a set of genes adjusting for possible genetic effects. The precision matrix in the model specifies a covariate-adjusted Gaussian graph, which presents the conditional dependence structure of gene expression after the con...
متن کامل