On the Convergence of Q-ritz Pairs and Refined Q-ritz Vectors for Quadratic Eigenvalue Problems
نویسنده
چکیده
For a given subspace, the q-Rayleigh-Ritz method projects the large quadratic eigenvalue problem (QEP) onto it and produces a small sized dense QEP. Similar to the Rayleigh-Ritz method for the linear eigenvalue problem, the q-Rayleigh-Ritz method defines the q-Ritz values and the q-Ritz vectors of the QEP with respect to the projection subspace. We analyze the convergence of the method when the angle between the subspace and the desired eigenvector converges to zero. We prove that there is a q-Ritz value that converges to the desired eigenvalue unconditionally but the q-Ritz vector converges conditionally and may fail to converge. To remedy the drawback of possible non-convergence of the q-Ritz vector, we propose a refined q-Ritz vector that is mathematically different from the q-Ritz vector and is proved to converge unconditionally. We construct examples to illustrate our theory.
منابع مشابه
A semiorthogonal generalized Arnoldi method and its variations for quadratic eigenvalue problems
In this paper, we are concerned with the computation of a few eigenpairs with smallest eigenvalues in absolute value of quadratic eigenvalue problems. We first develop a semiorthogonal generalized Arnoldi method where the name comes from the application of a pseudo inner product in the construction of a generalized Arnoldi reduction [25] for a generalized eigenvalue problem. The method applies ...
متن کاملRayleigh-Ritz Approximation and Refinement of Periodic Matrix Pairs
In this paper, we study the Rayleigh-Ritz approximation for the eigenproblem of periodic matrix pairs. We show the convergence of the Ritz value and periodic Ritz vectors. Furthermore, we prove the convergence of refined periodic Ritz vectors and propose an efficient algorithm for computing the refined periodic Ritz vectors. The numerical result shows that the refinement procedure produces an e...
متن کاملPii: S0168-9274(01)00132-5
The harmonic Arnoldi method can be used to compute some eigenpairs of a large matrix, and it is more suitable for finding interior eigenpairs. However, the harmonic Ritz vectors obtained by the method may converge erratically and may even fail to converge, so that resulting algorithms may not perform well. To improve convergence, a refined harmonic Arnoldi method is proposed that replaces the h...
متن کاملImplicitly Restarted Generalized Second-order Arnoldi Type Algorithms for the Quadratic Eigenvalue Problem
We investigate the generalized second-order Arnoldi (GSOAR) method, a generalization of the SOAR method proposed by Bai and Su [SIAM J. Matrix Anal. Appl., 26 (2005): 640–659.], and the Refined GSOAR (RGSOAR) method for the quadratic eigenvalue problem (QEP). The two methods use the GSOAR procedure to generate an orthonormal basis of a given generalized second-order Krylov subspace, and with su...
متن کاملThe convergence of harmonic Ritz values, harmonic Ritz vectors and refined harmonic Ritz vectors
This paper concerns a harmonic projection method for computing an approximation to an eigenpair (λ, x) of a large matrix A. Given a target point τ and a subspace W that contains an approximation to x, the harmonic projection method returns an approximation (μ + τ, x̃) to (λ, x). Three convergence results are established as the deviation of x from W approaches zero. First, the harmonic Ritz value...
متن کامل