Giant electrorheological effect: a microscopic mechanism.

نویسندگان

  • Shuyu Chen
  • Xianxiang Huang
  • Nico F A van der Vegt
  • Weijia Wen
  • Ping Sheng
چکیده

Electrorheological fluids constitute a type of colloids that can vary their rheological characteristics upon the application of an electric field. The recently discovered giant electrorheological (GER) effect breaks the upper bound of the traditional ER effect, but a microscopic explanation is still lacking. By using molecular dynamics to simulate the urea-silicone oil mixture trapped in a nanocontact between two polarizable particles, we demonstrate that the electric field can induce the formation of aligned (urea) dipolar filaments that bridge the two boundaries of the nanoscale confinement. This phenomenon is explainable on the basis of a 3D to 1D crossover in urea molecules' microgeometry, realized through the confinement effect provided by the oil chains. The resulting electrical energy density yields an excellent account of the observed GER yield stress variation as a function of the electric field.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Saturated orientational polarization of polar molecules in giant electrorheological fluids.

Many researches on polar-molecular electrorheological (PMER) fluids with giant electrorheological effects were reported in recent years. The particles of PMER fluids (PMER particles) are known to have a dielectric core with high dielectric constant and a shell of polar molecules. Our calculation of local electric fields using the finite element approach shows that the local electric field can c...

متن کامل

The giant electrorheological effect in suspensions of nanoparticles.

Electrorheology (ER) denotes the control of a material's flow properties (rheology) through an electric field. We have fabricated electrorheological suspensions of coated nanoparticles that show electrically controllable liquid-solid transitions. The solid state can reach a yield strength of 130 kPa, breaking the theoretical upper bound on conventional ER static yield stress that is derived on ...

متن کامل

Sedimentation upon Different Carrier Liquid in Giant Electrorheological Fluid and Its Application

*Correspondence: Weijia Wen, Department of Physics and Institute of Nano Science and Technology, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China e-mail: [email protected] When giant electrorheological (GER) fluid is settled after some time, particles can precipitate out of the oil in a multistep process that involves the formation of larger particles, t...

متن کامل

Manipulation of microfluidic droplets by electrorheological fluid.

Microfluidics, especially droplet microfluidics, attracts more and more researchers from diverse fields, because it requires fewer materials and less time, produces less waste and has the potential of highly integrated and computer-controlled reaction processes for chemistry and biology. Electrorheological fluid, especially giant electrorheological fluid (GERF), which is considered as a kind of...

متن کامل

Influence of liquid phase on nanoparticle-based giant electrorheological fluid.

We show that the chemical structures of silicone oils can have an important role in the giant electrorheological (GER) effect. The interaction between silicone oils and solid nanoparticles is found to significantly influence the ER effect. By increasing the kinematic viscosity of silicone oils, which is a function of siloxane chain length, sol-like, gel-like and clay-like appearances of the con...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Physical review letters

دوره 105 4  شماره 

صفحات  -

تاریخ انتشار 2010