Applying Aspects of Multi-robot Search to Particle Swarm Optimization
نویسندگان
چکیده
We present a modified version of the Particle swarm Optimization algorithm in which we adjust the virtual swarm search by incorporating inter-agent dynamics native to multi-robot search scenarios. The neighborhood structure of PSO is modified to accurately represent feasible neighborhoods in multiple robot systems with limited communication in several different ways. The new algorithms are tested on several standard benchmark problems with a varying number of dimensions and are shown to offer superior performances to the standard algorithm in some cases. Further potential modifications and uses of the new algorithms are discussed.
منابع مشابه
Pareto design of fuzzy tracking control based on the particle swarm optimization algorithm for a walking robot in the lateral plane on slope
Many researchers have controlled and analyzed biped robots that walk in the sagittal plane. Nevertheless, walking robots require the capability to walk merely laterally, when they are faced with the obstacles such as a wall. In walking robot field, both nonlinearity of the dynamic equations and also having a tracking system cause an effective control has to be utilized to address these problems...
متن کاملA Modified Discreet Particle Swarm Optimization for a Multi-level Emergency Supplies Distribution Network
Currently, the research of emergency supplies distribution and decision models mostly focus on deterministic models and exact algorithm. A few of studies have been done on the multi-level distribution network and matheuristic algorithm. In this paper, random processes theory is adopted to establish emergency supplies distribution and decision model for multi-level network. By analyzing the char...
متن کاملA Modified Particle Swarm Optimization on Search Tasking
Recently, more and more researches have been conducted on the multi-robot system by applying bioinspired algorithms. Particle Swarm Optimization (PSO) is one of the optimization algorithms that model a set of solutions as a swarm of particles that spread in the search space. This algorithm has solved many optimization problems, but has a defect when it is applied on search tasking. As the time ...
متن کاملFuzzy Apriori Rule Extraction Using Multi-Objective Particle Swarm Optimization: The Case of Credit Scoring
There are many methods introduced to solve the credit scoring problem such as support vector machines, neural networks and rule based classifiers. Rule bases are more favourite in credit decision making because of their ability to explicitly distinguish between good and bad applicants.In this paper multi-objective particle swarm is applied to optimize fuzzy apriori rule base in credit scoring. ...
متن کاملFuzzy Apriori Rule Extraction Using Multi-Objective Particle Swarm Optimization: The Case of Credit Scoring
There are many methods introduced to solve the credit scoring problem such as support vector machines, neural networks and rule based classifiers. Rule bases are more favourite in credit decision making because of their ability to explicitly distinguish between good and bad applicants.In this paper multi-objective particle swarm is applied to optimize fuzzy apriori rule base in credit scoring. ...
متن کامل