A Complete System of Measurement Invariants for Abelian Lie Transformation Groups

نویسندگان

  • Yaron Gvili
  • Nir A. Sochen
چکیده

We present a complete system of functionally independent invariants for Abelian Lie transformation groups acting on an image. The invariants are based on measurements, given by inner product of predesigned functions and the image. We build on steerable filters and adopt a Lie theoretical approach that is applicable to any dimensionality. A complete characterization of Lie measurement invariants of a general irreducible component of the group, termed block invariants, is provided. We show that invariants for the entire group can be taken as the union of the invariants of its components. The system is completed by deriving invariants between components of the group, termed cross invariants.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Transformation Groups acting on the Real Plane and their Differential Invariants

Realizations of finite-dimensional Lie algebras on the real plane are reviewed. A complete set of differential invariants and Lie determinants of continuous transformation groups acting on the real plane is constructed.

متن کامل

Transformation groups on real plane and their differential invariants

Complete sets of bases of differential invariants, operators of invariant differentiation and Lie determinants of continuous transformation groups acting on the real plane are constructed. As a necessary preliminary, realizations of finite-dimensional Lie algebras on the real plane are revisited.

متن کامل

An extended complete Chebyshev system of 3 Abelian integrals related to a non-algebraic Hamiltonian system

In this paper, we study the Chebyshev property of the 3-dimentional vector space $E =langle I_0, I_1, I_2rangle$, where $I_k(h)=int_{H=h}x^ky,dx$ and $H(x,y)=frac{1}{2}y^2+frac{1}{2}(e^{-2x}+1)-e^{-x}$ is a non-algebraic Hamiltonian function. Our main result asserts that $E$ is an extended complete Chebyshev space for $hin(0,frac{1}{2})$. To this end, we use the criterion and tools developed by...

متن کامل

Diierential Invariants

This paper summarizes recent results on the number and characterization of di erential invariants of transformation groups Generalizations of theorems due to Ovsiannikov and to M Green are presented as well as a new approach to nding bounds on the number of independent di erential invariants Consider a group of transformations acting on a jet space coordinatized by the inde pendent variables th...

متن کامل

The structure of a pair of nilpotent Lie algebras

Assume that $(N,L)$, is a pair of finite dimensional nilpotent Lie algebras, in which $L$ is non-abelian and $N$ is an ideal in $L$ and also $mathcal{M}(N,L)$ is the Schur multiplier of the pair $(N,L)$. Motivated by characterization of the pairs $(N,L)$ of finite dimensional nilpotent Lie algebras by their Schur multipliers (Arabyani, et al. 2014) we prove some properties of a pair of nilpoten...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2003