Bankruptcy prediction for Russian companies: Application of combined classifiers

نویسندگان

  • Elena Fedorova
  • Evgeni V. Gilenko
  • Sergey Dovzhenko
چکیده

The problem of bankruptcy forecasting is one of the most actively studied nowadays, posing the task of building effective classifiers as well as the task of dealing with dataset imbalance. In this paper, we apply different combinations of modern learning algorithms (MDA, LR, CRT, and ANNs) in order to try to identify the most effective approach to bankruptcy prediction for Russian manufacturing companies. Simultaneously, we try to find out whether the financial indicators stipulated by Russian legislation provide an effective set of indicators for bankruptcy prediction. 2013 Elsevier Ltd. All rights reserved.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Application of Genetic Algorithm in Development of Bankruptcy Predication Theory Case Study: Companies Listed on Tehran Stock Exchange

The bankruptcy prediction models have long been proposedas a key subject in finance. The present study, therefore, makes aneffort to examine the corporate bankruptcy prediction through employmentof the genetic algorithm model. Furthermore, it attempts to evaluatethe strategies to overcome the drawbacks of ordinary methods forbankruptcy prediction through application of genetic algorithms. Thesa...

متن کامل

An Adaptive Fuzzy Neural Network Model for Bankruptcy Prediction of Listed Companies on the Tehran Stock Exchange

Nowadays, prediction of corporate bankruptcy is one of the most important issues which have received great attentions among academia and practitioners. Although several studies have been accomplished in the field of bankruptcy prediction, less attention has been devoted for proposing a systematic approach based on fuzzy neural networks.  The present study proposes fuzzy neural networks to predi...

متن کامل

Application of ensemble learning techniques to model the atmospheric concentration of SO2

In view of pollution prediction modeling, the study adopts homogenous (random forest, bagging, and additive regression) and heterogeneous (voting) ensemble classifiers to predict the atmospheric concentration of Sulphur dioxide. For model validation, results were compared against widely known single base classifiers such as support vector machine, multilayer perceptron, linear regression and re...

متن کامل

A Genetic Algorithm-Based Heterogeneous Random Subspace Ensemble Model for Bankruptcy Prediction

Ensemble classification involves combining multiple classifiers to obtain more accurate predictions than those obtained using individual models. Ensemble techniques are known to be very useful in improving the generalization ability of a classifier. The random subspace ensemble technique is a simple but effective method of constructing ensemble classifiers, in which some features are randomly d...

متن کامل

Using the Imperialistic Competitive Algorithm Model in Bankruptcy Prediction and Comparison with Genetic Algorithm Model in Listed Companies of Tehran Stock Exchange

Bankruptcy prediction is a major issue in classification of companies. Since bankruptcy is extremely costly, investors, owners, managers, creditors, and government agencies are interested in evaluating the financial status of companies. This study tried to predict bankruptcy among companies registered in Tehran Stock Exchange (Iran) by designing imperialist competitive algorithm and genetic alg...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Expert Syst. Appl.

دوره 40  شماره 

صفحات  -

تاریخ انتشار 2013