Effects of genomic context and chromatin structure on transcription-coupled and global genomic repair in mammalian cells.
نویسندگان
چکیده
It has been long recognized that in mammalian cells, DNA damage is preferentially repaired in the transcribed strand of transcriptionally active genes. However, recently, we found that in Chinese hamster ovary (CHO) cells, UV-induced cyclobutane pyrimidine dimers (CPDs) are preferentially repaired in both the transcribed and the non-transcribed strand of exon 1 of the dihydrofolate reductase (DHFR) gene. We mapped CPD repair at the nucleotide level in the transcriptionally active DHFR gene and the adjacent upstream OST gene, both of which have been translocated to two chromosomal positions that differ from their normal endogeneous positions. This allowed us to study the role of transcription, genomic context and chromatin structure on repair. We found that CPD repair in the transcribed strand is the same for endogenous and translocated DHFR genes, and the order of repair efficiency is exon 1 > exon 2 > exon 5. However, unlike the endogenous DHFR gene, efficient repair of CPDs in the non-transcribed strand of exon 1 is not observed in the translocated DHFR gene. CPDs are efficiently repaired in the transcribed strand in endogenous and translocated OST genes, which indicates that efficient repair in exon 1 of the non-transcribed strand of the endogenous DHFR gene is not due to the extension of transcription-coupled repair of the OST gene. Using micrococcal nuclease digestion, we probed the chromatin structure in the DHFR gene and found that chromatin structure in the exon 1 region of endogenous DHFR is much more open than at translocated loci. These results suggest that while transcription-coupled repair is transcription dependent, global genomic repair is greatly affected by chromatin structure.
منابع مشابه
Nuclear Architecture and Epigenetics of Lineage Choice
Differentiation is an epigenetic process which is installed by changes of transcriptional programs over successive cellular divisions. A number of studies have reported the effects of biochemical modifications of chromatin (DNA and chromatin proteins) on the regulation of transcription. Although, these studies are able to explain how transcription of a given gene is regulated (toward activation...
متن کاملGlobal genome nucleotide excision repair is organized into domains that promote efficient DNA repair in chromatin.
The rates at which lesions are removed by DNA repair can vary widely throughout the genome, with important implications for genomic stability. To study this, we measured the distribution of nucleotide excision repair (NER) rates for UV-induced lesions throughout the budding yeast genome. By plotting these repair rates in relation to genes and their associated flanking sequences, we reveal that,...
متن کاملAt the intersection of non-coding transcription, DNA repair, chromatin structure, and cellular senescence
It is well accepted that non-coding RNAs play a critical role in regulating gene expression. Recent paradigm-setting studies are now revealing that non-coding RNAs, other than microRNAs, also play intriguing roles in the maintenance of chromatin structure, in the DNA damage response, and in adult human stem cell aging. In this review, we will discuss the complex inter-dependent relationships am...
متن کاملCOMMENTARY DNA repair and transcriptional activity in genes
Recent findings on the genomic heterogeneity of mammalian DNA repair have disclosed new features about molecular aspects of the repair processes and have also raised new interesting questions to help direct our research. The studies on preferential DNA repair in active genes demonstrate that there are variations in the repair processes corresponding to different parts of the genome and we are n...
متن کاملSIRT6 stabilizes DNA-dependent Protein Kinase at chromatin for DNA double-strand break repair
The Sir2 chromatin regulatory factor links maintenance of genomic stability to life span extension in yeast. The mammalian Sir2 family member SIRT6 has been proposed to have analogous functions, because SIRT6-deficiency leads to shortened life span and an aging-like degenerative phenotype in mice, and SIRT6 knockout cells exhibit genomic instability and DNA damage hypersensitivity. However, the...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Nucleic acids research
دوره 31 20 شماره
صفحات -
تاریخ انتشار 2003